
NIST Special Publication 500-288

Revision 0

Draft 2

Specification for
WS-Biometric Devices (WS-BD)

Revision 0

Draft 2

Ross J. Micheals

Matt Aronoff

Kayee Kwong

Kevin Mangold

Karen Marshall

NIST Special Publication 500-288

Specification for
WS-Biometric Devices (WS-BD)

Revision 0
Draft 2

Recommendations of the National Institute of
Standards and Technology

Ross J. Micheals
Matt Aronoff
Kayee Kwong
Kevin Mangold
Karen Marshall

I N F O R M A T I O N T E C H N O L O G Y

Biometric Clients Lab
Image Group
Information Access Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8940

Summer 2011

US Department of Commerce
Rebecca M. Blank, Acting Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Director

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

DRAFT

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the 1

U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards 2

infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical 3

analysis to advance the development and productive use of information technology. 4

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 5

experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 6

endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, 7

materials, or equipment are necessarily the best available for the purpose.8

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

i

DRAFT

Table of Contents 9

1 Introduction .. 1 10

1.1 Terminology ... 1 11

1.2 Documentation Conventions ... 2 12

 Quotations .. 2 1.2.113

 Machine-Readable Code ... 2 1.2.214

 Sequence Diagrams .. 2 1.2.315

1.3 Normative References ... 2 16

2 Design Concepts and Architecture .. 5 17

2.1 Tiered Specifications ... 5 18

2.2 Interoperability ... 5 19

2.3 Architectural Components .. 6 20

 Client .. 6 2.3.121

 Sensor .. 6 2.3.222

 Sensor Service .. 6 2.3.323

2.4 Intended Use .. 6 24

2.5 General Service Behavior .. 8 25

 Security Model .. 8 2.5.126

 HTTP Request-Response Usage ... 8 2.5.227

 Client Identity ... 9 2.5.328

 Sensor Identity ... 9 2.5.429

 Locking ... 10 2.5.530

 Operations Summary .. 11 2.5.631

 Idempotency... 12 2.5.732

 Service Lifecycle Behavior ... 13 2.5.833

3 Data Dictionary ... 14 34

3.1 Namespaces ... 14 35

3.2 UUID ... 14 36

3.3 WsbdDictionary .. 14 37

3.4 WsbdParameter .. 15 38

3.5 WsbdRange .. 17 39

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

ii

DRAFT

3.6 WsbdStringArray ... 18 40

3.7 WsbdUuidArray... 18 41

3.8 WsbdStatus .. 18 42

3.9 WsbdResult .. 20 43

 Terminology Shorthand .. 21 3.9.144

 Required Elements .. 21 3.9.245

 Element Summary .. 21 3.9.346

3.10 Validation ... 22 47

4 Metadata .. 23 48

4.1 Service Information .. 23 49

4.2 Configuration .. 24 50

4.3 Captured Data .. 24 51

5 Operations .. 25 52

5.1 General Usage Notes .. 25 53

 Precedence of Status Enumerations .. 25 5.1.154

 Parameter Failures .. 27 5.1.255

 Visual Summaries ... 27 5.1.356

5.2 Documentation Conventions ... 29 57

 General Information.. 29 5.2.158

 WsbdResult Summary ... 30 5.2.259

 Usage Notes ... 31 5.2.360

 Unique Knowledge .. 31 5.2.461

 Return Values Detail ... 31 5.2.562

5.3 Register .. 32 63

 WsbdResult Summary ... 32 5.3.164

 Usage Notes ... 32 5.3.265

 Unique Knowledge .. 32 5.3.366

 Return Values Detail ... 32 5.3.467

5.4 Unregister ... 34 68

 WsbdResult Summary ... 34 5.4.169

 Usage Notes ... 34 5.4.270

 Unique Knowledge .. 34 5.4.371

 Return Values Detail ... 35 5.4.472

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

iii

DRAFT

5.5 Try Lock .. 37 73

 WsbdResult Summary ... 37 5.5.174

 Usage Notes ... 37 5.5.275

 Unique Knowledge .. 37 5.5.376

 Return Values Detail ... 37 5.5.477

5.6 Steal Lock ... 40 78

 WsbdResult Summary ... 40 5.6.179

 Usage Notes ... 40 5.6.280

 Unique Knowledge .. 41 5.6.381

 Return Values Detail ... 41 5.6.482

5.7 Unlock .. 43 83

 WsbdResult Summary ... 43 5.7.184

 Usage Notes ... 43 5.7.285

 Unique Knowledge .. 43 5.7.386

 Return Values Detail ... 43 5.7.487

5.8 Get Service Info .. 45 88

 WsbdResult Summary ... 45 5.8.189

 Usage Notes ... 45 5.8.290

 Unique Knowledge .. 45 5.8.391

 Return Values Detail ... 45 5.8.492

5.9 Initialize .. 47 93

 WsbdResult Summary ... 47 5.9.194

 Usage Notes ... 47 5.9.295

 Unique Knowledge .. 47 5.9.396

 Return Values Detail ... 48 5.9.497

5.10 Get Configuration ... 51 98

 WsbdResult Summary ... 51 5.10.199

 Usage Notes ... 51 5.10.2100

 Unique Knowledge .. 51 5.10.3101

 Return Values Detail ... 51 5.10.4102

5.11 Set Configuration .. 55 103

 WsbdResult Summary ... 55 5.11.1104

 Usage Notes ... 55 5.11.2105

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

iv

DRAFT

 Unique Knowledge .. 56 5.11.3106

 Return Values Detail ... 56 5.11.4107

5.12 Capture .. 60 108

 WsbdResult Summary ... 60 5.12.1109

 Usage Notes ... 60 5.12.2110

 Unique Knowledge .. 61 5.12.3111

 Return Values Detail ... 61 5.12.4112

5.13 Download ... 65 113

 WsbdResult Summary ... 65 5.13.1114

 Usage Notes ... 65 5.13.2115

 Unique Knowledge .. 69 5.13.3116

 Return Values Detail ... 69 5.13.4117

5.14 Get Download Info .. 71 118

 WsbdResult Summary ... 71 5.14.1119

 Usage Notes ... 71 5.14.2120

 Unique Knowledge .. 71 5.14.3121

 Return Values Detail ... 71 5.14.4122

5.15 Thrifty Download .. 73 123

 WsbdResult Summary ... 73 5.15.1124

 Usage Notes ... 73 5.15.2125

 Unique Knowledge .. 74 5.15.3126

 Return Values Detail ... 74 5.15.4127

5.16 Cancel .. 76 128

 WsbdResult Summary ... 76 5.16.1129

 Usage Notes ... 76 5.16.2130

 Unique Knowledge .. 77 5.16.3131

 Return Values Detail ... 77 5.16.4132

Appendix A Parameter Details ... 80 133

A.1 Connections.. 80 134

A.1.1 Last Updated .. 80 135

A.1.2 Inactivity Timeout ... 80 136

A.1.3 Maximum Concurrent Sessions ... 80 137

A.1.4 Least Recently Used (LRU) Sessions Automatically Dropped .. 81 138

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

v

DRAFT

A.2 Timeouts .. 81 139

A.2.1 Initialization Timeout .. 81 140

A.2.2 Get Configuration Timeout .. 81 141

A.2.3 Set Configuration Timeout .. 81 142

A.2.4 Capture Timeout ... 82 143

A.2.5 Post-Acquisition Processing Time .. 82 144

A.2.6 Lock Stealing Prevention Period .. 82 145

A.3 Storage ... 82 146

A.3.1 Maximum Storage Capacity ... 82 147

A.3.2 Least-Recently Used Capture Data Automatically Dropped .. 82 148

Appendix B Content Type Data .. 84 149

B.1 Content Type .. 84 150

B.2 Image Formats ... 84 151

B.3 Video Formats .. 84 152

B.4 General Biometric Formats ... 84 153

B.5 Modality-Specific Formats ... 84 154

Appendix C Pending Issues .. 85 155

Appendix D Acknowledgments .. 86 156

Appendix E Revision History .. 87 157

 158

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

1

DRAFT

1 Introduction 159

Imagine an intelligent biometric device that is secure, tamper-proof, and spoof resistant. Such a device would 160

enable biometrics as a viable option for remote authentication. Imagine a new generation of fingerprint 161

scanner, small enough and thin enough to clip onto a police officer’s uniform—enabling law enforcement to 162

quickly identify suspects. These envisioned devices require a communications protocol that is secure, globally 163

connected, and free from requirements on operating systems, device drivers, form factors, and low-level 164

communications protocols. WS-Biometric Devices is a protocol designed in the interest of furthering this goal, 165

with a specific focus on the single process shared by all biometric systems—acquisition. 166

1.1 Terminology 167

This section contains terminology commonly used throughout this document. First time readers are 168

encouraged to skip this section and revisit it as needed. 169

biometric capture device 170

a system component capable of capturing biometric data in digital form 171

client 172

a logical endpoint that originates operation requests 173

HTTP 174

Hypertext Transfer Protocol. Unless specified, the term HTTP may refer to either HTTP as defined in 175

[RFC2616] or HTTPS as defined in [RFC2660]. 176

payload 177

the content of an HTTP request or response. An input payload refers to the XML content of an HTTP 178

request. An output payload refers to the XML content of an HTTP response. 179

payload parameter 180

an operation parameter that is passed to a service within an input payload 181

REST 182

Representational State Transfer 183

sensor or biometric sensor 184

a single biometric capture device or a logical collection of biometric capture devices 185

SOAP 186

Simple Object Access Protocol 187

submodality 188

a distinct category or subtype within a biometric modality 189

target sensor or target biometric sensor 190

the biometric sensor made available by a particular service 191

URL parameter 192

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

2

DRAFT

a parameter passed to a web service by embedding it in the URL 193

Web service or service 194

a software system designed to support interoperable machine-to-machine interaction over a network 195

[WSGloss] 196

XML 197

Extensible Markup Language [XML] 198

1.2 Documentation Conventions 199

The following documentation conventions are used throughout this document. 200

 Quotations 1.2.1201

If the inclusion of a period within a quotation might lead to ambiguity as to whether or not the period should 202

be included in the quoted material, the period will be placed outside the trailing quotation mark. For example, 203

a sentence that ends in a quotation would have the trailing period “inside the quotation, like this quotation 204

punctuated like this.” However, a sentence that ends in a URL would have the trailing period outside the 205

quotation mark, such as “http://example.com”. 206

 Machine-Readable Code 1.2.2207

With the exception of some reference URLs, machine-readable information will typically be depicted with a 208

mono-spaced font, such as this. 209

 Sequence Diagrams 1.2.3210

Throughout this document, sequence diagrams are used to help explain various scenarios. These diagrams 211

are informative simplifications and are intended to help explain core specification concepts. Operations are 212

depicted in a functional, remote procedure call style. The level of abstraction presented in the diagrams, and 213

the details that are shown (or not shown) will vary according to the particular information being illustrated. 214

1.3 Normative References 215

[AN2K] http://www.nist.gov/itl/ansi/upload/sp500-245-a16.pdf, 27 July 2000

[BDIF205] ISO/IEC 19794-2:2005/Cor 1:2009/Amd 1:2010: Information technology – Biometric data

interchange formats – Part 2: Finger minutia data

[BDIF306] ISO/IEC 19794-3:2006: Information technology – Biometric data interchange formats – Part

3: Finger pattern spectral data

[BDIF405] ISO/IEC 19794-4:2005: Information technology – Biometric data interchange formats – Part

4: Finger image data

[BDIF505] ISO/IEC 19794-5:2005: Information technology – Biometric data interchange formats – Part

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

3

DRAFT

5: Face image data

[BDIF605] ISO/IEC 19794-6:2005: Information technology – Biometric data interchange formats – Part

6: Iris image data

[BDIF707] ISO/IEC 19794-7:2007/Cor 1:2009: Information technology – Biometric data interchange

formats – Part 7: Signature/sign time series data

[BDIF806] ISO/IEC 19794-8:2006/Cor 1:2011: Information technology – Biometric data interchange

formats – Part 8: Finger pattern skeletal data

[BDIF907] ISO/IEC 19794-9:2007: Information technology – Biometric data interchange formats – Part

9: Vascular image data

[BDIF1007] ISO/IEC 19794-10:2007: Information technology – Biometric data interchange formats –

Part 10: Hand geometry silhouette data

[CBEFF2010] ISO/IEC 19785-3:2007/Amd 1:2010: Information technology – Common Biometric Exchange

Formats Framework – Part 3: Patron format specifications with Support for Additional Data

Elements

[CTypeImg] Image Media Types, http://www.iana.org/assignments/media-types/image/index.html, 6 June
2011

[CTypeVideo] Video Media Types, http://www.iana.org/assignments/media-types/video/idex.html, 6 June
2011

[RFC2045] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies, http://www.ietf.org/rfc/rfc2045.txt, IETF RFC 2045,
November 1996.

[RFC2046] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types, http://www.ietf.org/rfc/rfc2045.txt, IETF RFC 2045, November 1996.

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[RFC2616] R. Fielding, et al. Hypertext Tranfer Protocol—HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt,
IETF RFC 2616, June 1999.

[RFC2660] E. Rescorla, et al. The Secure HyperText Transfer Protocol, http://www.ietf.org/rfc/rfc2660.txt,
IETF RFC 2660, August 1999.

[RFC4122] P. Leach, M. Mealling, and R. Salz, A Universally Unique Identifier (UUID) URN Namespace,
http://www.ietf.org/rfc/rfc4122.txt, IETF RFC 4122, July 2005.

[WSGloss] H. Haas, A. Brown, Web Services Glossary, http://www.w3.org/TR/ws-gloss/, February 11,
2004.

[XML] Tim Bray, et al. Extensible Markup Language (XML) 1.0 (Fifth Edition),
http://www.w3.org/TR/xml/. W3C Recommendation. 26 November 2008.

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

4

DRAFT

[XMLNS] Tim Bray, et al. Namespace in XML 1.0 (Third Edition), http://www.w3.org/TR/2009/REC-xml-
names-20091208/. W3C Recommendation. 8 December2009.

[XSDPart1] XML Schema Part 1: Structures Second Edition, http://www.w3.org/TR/xmlschema-1, W3C
Recommendation. 28 October 2004.

[XSDPart2] XML Schema Part 2: Datatypes Second Edition, http://www.w3.org/TR/xmlschema-2, W3C
Recommendation. 28 October 2004.

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

5

DRAFT

2 Design Concepts and Architecture 216

This section describes the major design concepts and overall architecture of WS-BD. The main purpose of a 217

WS-BD service is to expose a target biometric sensor to clients via web services. 218

2.1 Tiered Specifications 219

This specification represents the first in what is envisioned as a series of specifications. Each individual 220

specification describes a “level”—a numbered collection of capabilities and features. To help preserve 221

compatibility, additional capabilities will be introduced in higher specification levels. Each level should fully 222

contain the capabilities of its previous level. As the first level, Level 1, this specification provides the 223

foundation from which other specifications will be derived. 224

The following is a brief description of the general of each level of the specification: 225

• Level 1. Core synchronous acquisition operations via lightweight web service protocols (REST). 226

• Level 2. Synchronous and asynchronous acquisition operations. Asynchronous messaging might be 227

achieved via (SOAP-based) web services running on both the client and server or via polling. Live 228

preview capabilities will be an inherent feature of the specification. Fine-grained authorization 229

management might be included at this level. 230

• Level 3. Device discovery and workflow management. The functionality at this level may be better 231

described by profiling existing web service standards. 232

It is expected that this “roadmap” will change and accommodate feedback and evolving requirements. Levels 233

are intended to facilitate backwards compatibility. As a design philosophy, higher level specifications should, 234

as much as possible, provide additional, rather than substitute functionality. 235

2.2 Interoperability 236

ISO/IEC 2382-1 (1993) defines interoperability as “the capability to communicate, execute programs, or 237

transfer data among various functional units in a manner that requires the user to have little to no knowledge 238

of the unique characteristics of those units.” 239

Conformance to a standard does not necessarily guarantee interoperability. An example is conformance to an 240

HTML specification. A HTML page may be 100% conformant the HTML 4.0 specification, but it is not 241

interoperable between web browsers. Each browser has its own interpretation of how the content should be 242

displayed. To overcome this, web developers add a note suggesting which web browsers are compatible for 243

viewing. Interoperable web pages need to have the same visual outcome independent of which browser is 244

used. 245

A major design goal of WS-BD is to maximize interoperability, by minimizing the required “knowledge of the 246

unique characteristics” of a component that supports WS-BD. 247

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

6

DRAFT

2.3 Architectural Components 248

Before discussing the envisioned use of WS-BD, it may be useful to distinguish between the various 249

components that comprise a WS-BD implementation. These are logical components, and may or may not 250

correspond to particular physical boundaries. This distinction becomes vital in understanding WS-BD’s 251

operational models. 252

 Client 2.3.1253

A client is any software component that originates requests for biometric acquisition. Note that a client might 254

be one of many hosted in a parent (logical or physical) component, and that a client might originate requests 255

to a variety of destinations. 256

This icon is used to depict an arbitrary WS-BD client. A personal digital assistant (PDA) is used
to serve as a reminder that a client might be hosted on a non-traditional computer.

 Sensor 2.3.2257

A biometric sensor is any component that is capable of acquiring, i.e., digitally sampling, a biometric. Most 258

sensor components are hosted within a dedicated hardware component, but this is not necessarily globally 259

true. For example, a keyboard is a general input device, but might also be used for a keystroke dynamics 260

biometric. 261

This icon is used to depict a biometric device. The icon has a vague similarity to a fingerprint
scanner, but should be thought of as an arbitrary biometric sensor.

The term “sensor” in used in this document in a singular sense, but may in fact be referring to multiple 262

biometric capture devices. 263

 Sensor Service 2.3.3264

The sensor service is the “middleware” software component that exposes a biometric sensor to a client 265

through web services. The sensor service adapts HTTP request-response operations to biometric sensor 266

command & control. 267

This icon is used to depict a sensor service. The icon is abstract and has no meaningful form,
just as a sensor service is a piece of software that has no physical form.

2.4 Intended Use 268

Each implementation of WS-BD will be realized via a mapping of logical to physical components. A 269

distinguishing characteristic of an implementation will be the physical location of the sensor service 270

component. WS-BD is designed to support two scenarios: 271

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

7

DRAFT

1. Physically separated. The sensor service and biometric sensor are hosted by different physical 272

components. A physically separated service is one where there is both a physical and logical 273

separation between the biometric sensor and the service that provides access to it. 274

2. Physically integrated. The sensor service and biometric sensor are hosted within the same 275

physical component. A physically integrated service is one where the biometric sensor, and the 276

service that provides access to it, reside within the same physical component. 277

Figure 1 depicts a physically separated service. In this scenario, a biometric sensor is tethered to a personal 278

computer, workstation, or server. The web service, hosted on the computer, listens for communication 279

requests from clients. An example of such an implementation would be a USB fingerprint scanner attached to 280

a personal computer. A lightweight web service, running on that computer could listen to requests from local 281

(or remote) clients—translating WS-BD requests to and from biometric sensor commands. 282

 283

 284

Figure 1. A physically separated WS-BD implementation. 285

Figure 2 depicts a physically integrated service. In this scenario, a single hardware device has an embedded 286

biometric sensor, as well as a web service. Similar functionality is seen in many network printers; it is possible 287

to point a web browser to a local network address, and obtain a web page that displays information about the 288

state of the printer, such as toner and paper levels. Clients make requests directly to the integrated device; 289

and a web service running within an embedded system translates the WS-BD requests to and from biometric 290

sensor commands. 291

 292

Figure 2. A physically integrated WS-BD implementation. 293

The “separate” versus “integrated” distinction is indeed a simplification with a high degree of fuzziness. For 294

example, one might imagine putting a hardware shell around a USB fingerprint scanner connected to a small 295

form-factor computer. Inside the shell, the sensor service and sensor are on different physical components. 296

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

8

DRAFT

Outside the shell, the sensor service and sensor appear integrated. The definition of what constitutes the 297

“same” physical component depends on the particular implementation, and the intended level of abstraction. 298

Regardless, it is a useful distinction in that it illustrates the flexibility afforded by leveraging highly 299

interoperable communications protocols. 300

2.5 General Service Behavior 301

The following section describes the general behavior of WS-BD clients and services. 302

 Security Model 2.5.1303

In this version of the specification, it is assumed that if a client is able to establish a HTTP (or HTTPS) 304

communication with the sensor service, then the client is fully authorized to use the service. This implies that 305

all successfully connected clients which have equivalent authority may be considered peers. 306

Clients might be required to connect through various HTTP protocols, such as HTTPS with client-side 307

certificates, or a more sophisticated protocol such as Open Id (http://openid.net/) and/or OAuth. 308

Specific security measures are out of scope of this specification, but should be carefully considered when 309

implementing a WS-BD service. 310

 HTTP Request-Response Usage 2.5.2311

Most biometrics devices are inherently single user—i.e., they are designed to sample the biometrics from a 312

single user at a given time. Web services, on the other hand, are inherently designed to be stateless and 313

multiuser. A biometric device exposed via web services must therefore provide a mechanism to reconcile 314

these competing designs. 315

Notwithstanding the native limits of the underlying web server, WS-BD services must be capable of handling 316

multiple, concurrent requests. Services must respond to requests for operations that do not require exclusive 317

control of the biometric sensor and must do so without waiting until the biometric sensor is in a particular 318

state. 319

Because there is no well-accepted mechanism for providing asynchronous notification via REST, each 320

individual operation must block until completion. That is, the web server does not reply to a HTTP request 321

until the operation that is triggered by that request is finished. 322

Clients are not expected to poll—rather make a single HTTP request and block for the corresponding result. 323

Because of this, it is expected that a client would perform WS-BD operations on an independent thread, so 324

not to interfere with the general responsiveness of the client application. WS-BD clients therefore must be 325

configured in such a manner such that individual HTTP operations have timeouts that are compatible with a 326

particular implementation. 327

WS-BD operations may be longer than typical REST services. Consequently, there is a clear need to 328

differentiate between service level errors and HTTP communication errors. WS-BD services must pass-through 329

the status codes underlying a particular request. In other words, services must not use (or otherwise 330

‘piggyback’) HTTP status codes to indicate failures that occur within the service. If a service successfully 331

receives a well-formed request, then the service must return the HTTP status code 200 indicating such. 332

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

9

DRAFT

Failures are described within the contents of the XML data returned to the client for any given operation. The 333

exception to this is when the service receives a poorly-formed request (i.e., the XML payload is not valid), then 334

the service may return the HTTP status code 400, indicating a bad request. 335

This is deliberately different from REST services that override HTTP status codes to provide service-specific 336

error messages. This design pattern facilitates clearer communication of failures and errors than overriding 337

particular HTTP failure codes. It also provides better support for HTTP libraries that do not easily support 338

HTTP status code overrides. 339

 Client Identity 2.5.3340

Before discussing how WS-BD balances single-user vs. multi-user needs, it is necessary to understand the WS-341

BD model for how an individual client can easily and consistently identify itself to a service. 342

HTTP is, by design, a stateless protocol. Therefore, any persistence about the originator of a sequence of 343

requests must be built in (somewhat) artificially to the layer of abstraction above HTTP itself. This is 344

accomplished in WS-BD via a session—a collection of operations that originate from the same logical 345

endpoint. To initiate a session, a client performs a registration operation and obtains a session identifier (or 346

“session id”). During subsequent operations, a client uses this identifier as a parameter to uniquely identify 347

itself to a server. When the client is finished, it is expected to close a session with an unregistration operation. 348

To conserve resources, services may automatically unregister clients that do not explicitly unregister after a 349

period of inactivity (see §5.4.2.1). 350

This use of a session id directly implies that the particular sequences that constitute a session are entirely the 351

responsibility of the client. A client might opt to create a single session for its entire lifetime, or, might open 352

(and close) a session for a limited sequence of operations. WS-BD supports both scenarios. 353

It is possible, but is discouraged, that a client might maintain multiple sessions with the same service 354

simultaneously. This can be assumed without loss of generality, since a client with multiple sessions to a 355

service could be decomposed into to “sub-clients”—one (sub-) client per session id. 356

Just as a client might maintain multiple session ids, a single session id might be shared among a collection of 357

clients. By sharing the session id, a biometric sensor may then be put in a particular state by one client, and 358

then handed-off from another. Such a sophisticated implementation is outside the scope of this specification. 359

However, session id sharing is certainly permitted, and a deliberate artifact of the convention of using of the 360

session id as the client identifier. Many-to-many relationships (i.e., multiple session ids being shared among 361

multiple clients) are also possible, but should be avoided. 362

For simplicity, unless otherwise stated, this specification is written in a manner that assumes that a single 363

client maintains a single session id. 364

 Sensor Identity 2.5.4365

In general, implementers should map each target biometric sensor to a single URL. However, just as it is 366

possible for a client to communicate with multiple services, a host might be responsible for controlling 367

multiple target biometric sensors. 368

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

10

DRAFT

A service that controls independent sensors should expose each device via different URLs. A service that 369

controls multiple biometric devices simultaneously, however, should be exposed via the same endpoint. The 370

following figures and example illustrates this distinction. 371

 372

Figure 3. Independent sensors controlled by separate services 373

EXAMPLE: Figure 3 shows a physically separate implementation where a single host machine 374

controls two biometric sensors—one fingerprint scanner, and one digital camera. The devices act 375

independently and are therefore exposed via two different services—one at the URL 376

http://wsbd/fingerprint, and one at http://wsbd/camera. 377

 378

Figure 4. A sensor array controlled by a single service 379

EXAMPLE: Figure 4 shows a physically separate implementation where a single host machine 380

controls a pair of cameras used for stereo vision. The cameras act together as a single logical sensor, 381

and are both exposed via the same service, http://wsbd/camera_array. 382

 383

 Locking 2.5.5384

WS-Biometric Devices (WS-BD) uses a lock to satisfy two complimentary requirements: 385

1. A service must have exclusive, sovereign control over biometric sensor hardware to perform a 386

particular sensor operation such as initialization, configuration, or capture. 387

2. A client needs to perform an uninterrupted sequence of sensor operations. 388

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

11

DRAFT

Each WS-BD service exposes a single lock (one per service) that controls access to the sensor. Clients obtain 389

the lock in order to perform a sequence of operations that should not be interrupted. Obtaining the lock is an 390

indication to the server (and indirectly to peer clients) that (1) a series of sensor operations is about to be 391

initiated and (2) that server may assume sovereign control of the biometric sensor. 392

A client releases the lock upon completion of its desired sequence of tasks. This indicates to the server (and 393

indirectly to peer clients) that the uninterruptable sequence of operations is finished. A client might obtain 394

and release the lock many times within the same session or a client might open and close a session for each 395

pair of lock/unlock operations. This decision is entirely dependent on a particular client. 396

The statement that a client might “own” or “hold” a lock is a convenient simplification that makes it easier to 397

understand the client-server interaction. In reality, each sensor service maintains a unique global variable 398

that contains a session id. The originator of that session id can be thought of as the client that “holds” the 399

lock to the service. Clients are expected to release the lock after completing their required sensor operations, 400

but there is lock stealing—a mechanism for forcefully releasing locks. This feature is necessary to ensure that 401

one client cannot hold a lock indefinitely, denying its peers access to the biometric sensor. 402

As stated previously (see §2.5.3), it is implied that all successfully connected clients enjoy the same access 403

privileges. Each client is treated the same and are expected to work cooperatively with each other. This is 404

critically important, because it is this implied equivalence of “trust” that affords a lock stealing operation. 405

2.5.5.1 Pending Operations 406

Changing the state of the lock must have no effect on pending (i.e., currently running) sensor operations. That 407

is, a client may unlock, steal, or even re-obtain the service lock even if the target biometric sensor is busy. 408

When lock ownership is transferred during a sensor operation, overlapping sensor operations are prevented 409

by sensor operations returning sensorBusy. 410

 Operations Summary 2.5.6411

All WS-BD operations fall into one of eight categories: 412

1. Registration 413

2. Locking 414

3. Information 415

4. Initialization 416

5. Configuration 417

6. Capture 418

7. Download 419

8. Cancellation 420

Of these, the initialization, configuration, capture, and cancellation operations are all sensor operations (i.e., 421

they require exclusive sensor control) and require locking. Registration, locking, and download are all non-422

sensor operations. They do not require locking and (as stated earlier) must be available to clients regardless 423

of the status of the biometric sensor. 424

Download is not a sensor operation as this allows for a collection of clients to dynamically share acquired 425

biometric data. One client might perform the capture and hand off the download responsibility to a peer. 426

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

12

DRAFT

The following is a brief summary of each type of operation: 427

• Registration operations open and close (unregister) a session. 428

• Locking operations are used by a client to obtain the lock, release the lock, and steal the lock. 429

• Information operations query the service for information about the service itself, such as the 430

supported biometric modalities, and service configuration parameters. 431

• The initialization operation prepares the biometric sensor for operation. 432

• Configuration operations get or set sensor parameters. 433

• The capture operation signals to the sensor to acquire a present biometric. 434

• Download operations transfer the captured biometric data from the service to the client. 435

• Sensor operations can be stopped by the cancellation operation. 436

 Idempotency 2.5.7437

The W3C Web Services glossary [WSGloss] defines idempotency as: 438

 439

[the] property of an interaction whose results and side-effects are the same whether it is done one or 440

multiple times. 441

When regarding an operation’s idempotence, it should be assumed no other operations occur in between 442

successive operations, and that each operation is successful. Notice that idempotent operations may have 443

side-effects—but the final state of the service must be the same over multiple (uninterrupted) invocations. 444

The following example illustrates idempotency using an imaginary web service. 445

EXAMPLE: A REST-based web service allows clients to create, read, update, and delete customer 446

records from a database. A client executes an operation to update a customer’s address from “123 447

Main St” to “100 Broad Way.” 448

Suppose the operation is idempotent. Before the operation, the address is “123 Main St”. After one 449

execution of the update, the server returns “success”, and the address is “100 Broad Way”. If the 450

operation is executed a second time, the server again returns “success,” and the address remains 451

“100 Broad Way”. 452

Now suppose that when the operation is executed a second time, instead of returning “success”, the 453

server returns “no update made”, since the address was already “100 Broad Way.” Such an operation 454

is not idempotent, because executing the operation a second time yielded a different result than the 455

first execution. 456

The following is an example in the context of WS-BD. 457

EXAMPLE: A service has an available lock. A client invokes the lock operation and obtains a “success” 458

result. A subsequent invocation of the operation also returns a “success” result. The operation being 459

idempotent means that the results (“success”) and side-effects (a locked service) of the two 460

sequential operations are identical. 461

To best support robust communications, WS-BD is designed to offer idempotent services whenever possible. 462

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

13

DRAFT

 Service Lifecycle Behavior 2.5.8463

The lifecycle of a service (i.e., when the service starts responding to requests, stops, or is otherwise 464

unavailable) must be modeled after an integrated implementation. This is because it is significantly easier for 465

a physically separated implementation to emulate the behavior of a fully integrated implementation than it is 466

the other way around. This requirement has a direct effect on the expected behavior of how a physically 467

separated service would handle a change in the target biometric sensor. 468

Specifically, on a desktop computer, hot-swapping the target biometric sensor is possible through an 469

operating system’s plug-and-play architecture. By design, this specification does not assume that it is possible 470

to replace a biometric sensor within an integrated device. Therefore, having a physically separated 471

implementation emulate an integrated implementation provides a simple means of providing a common level 472

of functionality. 473

By virtue of the stateless nature of the HTTP protocol, a client has no simple means of detecting if a web 474

service has been restarted. For most web communications, a client should not require this—it is a core 475

capability that comprises the robustness of the web. Between successive web requests, a web server might be 476

restarted on its host any number of times. In the case of WS-BD, replacing an integrated device with another 477

(configured to respond on the same endpoint) is an effective restart of the service. Therefore, by the 478

emulation requirement, replacing the device within a physically separated implementation must behave 479

similarly. 480

A client may not be directly affected by a service restart, if the service is written in a robust manner. For 481

example, upon detecting a new target biometric sensor, a robust server could quiesce (refusing all new 482

requests until any pending requests are completed) and automatically restart. 483

Upon restarting, services may return to a fully reset state—i.e., all sessions should be dropped, and the lock 484

should not have an owner. However, a high-availability service may have a mechanism to preserve state 485

across restarts, but is significantly more complex to implement (particularly when using integrated 486

implementations!). A client that communicated with a service that was restarted would lose both its session 487

and the service lock (if held). With the exception of the get service info operation, through various fault 488

statuses a client would receive indirect notification of a service restart. If needed, a client could use the 489

service’s common info timestamp (§A.1.1) to detect potential changes in the get service info operation. 490

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

14

DRAFT

3 Data Dictionary 491

This section contains descriptions of the data elements that are contained within the WS-BD data model. Each 492

data type is described via an accompanying XML Schema type definition [XSDPart1, XSDPart2]. 493

3.1 Namespaces 494

The following namespaces, and corresponding namespace prefixes are used throughout this document. 495

Prefix Namespace Remarks

xs http://www.w3.org/2001/XMLSchema The xs namespace refers to the XML Schema
specification. Definitions for the xs data types
(i.e., those not explicitly defined here) can be
found in [XSDPart2].

xsi http://www.w3.org/2001/XMLSchema-instance The xsi namespace allows the schema to refer
to other XML schemas in a qualified way.

wsbd http://nist.gov/itl/bws/ws-bd/L1/r0/ The wsbd namespace is an URL that provides a
globally unique name—it does not resolve to
an active website.

It should be assumed that each of the following data types is defined in the target namespace wsbd. 496

3.2 UUID 497

A UUID is a unique identifier as defined in [RFC4122]. A service must use UUIDs that conform to the following 498

XML Schema type definition. 499

<xs:simpleType name="uuid"> 500
 <xs:restriction base="xs:string"> 501
 <xs:pattern value="[\da-fA-F]{8}-[\da-fA-F]{4}-[\da-fA-F]{4}-[\da-fA-F]{4}-[\da-fA-F]{12}"/> 502
 </xs:restriction> 503
</xs:simpleType> 504

 505

EXAMPLE: Each line in the following code fragment contains a well-formed UUID. Enclosing tags (which may 506

vary) are omitted. 507

E47991C3-CA4F-406A-8167-53121C0237BA 508
10fa0553-9b59-4D9e-bbcd-8D209e8d6818 509
161FdBf5-047F-456a-8373-D5A410aE4595 510

3.3 WsbdDictionary 511

A WsbdDictionary is a generic container used to hold an arbitrary collection of name-value pairs. 512

<xs:complexType name="WsbdDictionary"> 513
 <xs:sequence> 514
 <xs:element minOccurs="0" maxOccurs="unbounded" name="item"> 515
 <xs:complexType> 516

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

15

DRAFT

 <xs:sequence> 517
 <xs:element name="key" nillable="true" type="xs:string" /> 518
 <xs:element name="value" nillable="true" type="xs:anyType" /> 519
 </xs:sequence> 520
 </xs:complexType> 521
 </xs:element> 522
 </xs:sequence> 523
</xs:complexType> 524

 525

EXAMPLE: A query to get the metadata of a capture returns a dictionary of supported settings and the values 526

at the time of capture. Enclosing tags (which may vary) are omitted. 527

<item> 528
 <key>ImageWidth</key> 529
 <value>640</value> 530
</item> 531
<item> 532
 <key>ImageHeight</key> 533
 <value>640</value> 534
</item> 535
<item> 536
 <key>CaptureDate</key> 537
 <value>2011-01-01T01:23:45Z</value> 538
</item> 539

WsbdDictionary instances are nestable—i.e., the value element of one WsbdDictionary can contain another 540

WsbdDictionary. The use of xs:anyType allows for an XML element of any structure or definition to be used. 541

Using types not defined in this document or types defined in W3’s XML Schema recommendations [XSDPart1, 542

XSDPart2] might require a client to have unique knowledge about the service. Because the requirement of 543

unique knowledge negatively impacts interoperability, using such elements is discouraged. 544

3.4 WsbdParameter 545

A WsbdParameter is a container used to describe the parameters or settings of a service or sensor. 546

<xs:complexType name="WsbdParameter"> 547
 <xs:sequence> 548
 <xs:element name="name" type="xs:string" /> 549
 <xs:element name="type" type="xs:QName" /> 550
 <xs:element name="readOnly" type="xs:boolean" minOccurs="0" /> 551
 <xs:element name="supportsMultiple" type="xs:boolean" minOccurs="0" /> 552
 <xs:element name="defaultValue" type="xs:anyType" /> 553
 <xs:element name="allowedValues" minOccurs="0"> 554
 <xs:complexType> 555
 <xs:sequence> 556
 <xs:element name="allowedValue" type="xs:anyType" maxOccurs"unbounded" /> 557
 </xs:sequence> 558
 </xs:complexType> 559
 </xs:element> 560
 </xs:sequence> 561
</xs:complexType> 562

 563

See §4 for more information on metadata and the use of WsbdParameter. 564

3.4.1.1 Element Summary 565

The following is a brief informative description of each WsbdParameter element. 566

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

16

DRAFT

Element Description
name The name of the parameter.

type The fully qualified type of the parameter.

readOnly Whether or not this parameter is read-only.

supportsMultiple Whether or not this parameter can support multiple values for this parameter
(§3.4.1.2).

defaultValue The default value of this parameter.

allowedValues A list of allowed values for this parameter (§3.4.1.3).

3.4.1.2 Supports Multiple 567

In some cases, a parameter might require multiple values to successfully capture or configure a sensor or 568

service. This flag specifies whether the parameter is capable of multiple values. 569

EXAMPLE: An iris scanner may have the ability to capture a left iris, right iris, and frontal face image in a 570

single capture. This example system has a separate sensor or service for frontal face captures, but both irises 571

are needed. The first code block is what the service exposes to the clients. The second code block is how a 572

client would configure this parameter. Essentially, the client would configure the parameter twice during the 573

same set configuration operation. In both examples, enclosing tags (which may vary) are omitted. 574

<name>IrisSensorCaptureModality</name> 575
<type>xs:string</type> 576
<readOnly>false</readOnly> 577
<supportsMultiple>true</supportsMultiple> 578
<defaultValue>leftIris</defaultValue> 579
<allowedValues> 580
 <allowedValue>leftIris</allowedValue> 581
 <allowedValue>rightIris</allowedValue> 582
 <allowedValue>frontalFace</allowedValue> 583
</allowedValues> 584

 585

<item> 586
 <key>IrisSensorCaptureModality</key> 587
 <value>leftIris</value> 588
</item> 589
<item> 590
 <key>IrisSensorCaptureModality</key> 591
 <value>rightIris</value> 592
</item> 593

 594

3.4.1.3 Allowed Values 595

For parameters that are not read-only and have restrictions on what values it may have, this allows the 596

service to dynamically expose it to its clients. 597

EXAMPLE: The following code block demonstrates a parameter, “CameraFlash”, with only three valid values. 598

Enclosing tags (which may vary) are omitted. 599

<name>CameraFlash</name> 600

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

17

DRAFT

<type>xs:string</type> 601
<readOnly>false</readOnly> 602
<supportsMultiple>false</supportsMultiple> 603
<defaultValue>auto</defaultValue> 604
<allowedValues> 605
 <allowedValue>on</allowedValue> 606
 <allowedValue>off</allowedValue> 607
 <allowedValue>auto</allowedValue> 608
</allowedValues> 609

 610

Parameters requiring a range of values should be described by using WsbdRange (§3.5). Because the allowed 611

type is not the same as its parameter type, a service must have logic to check for a WsbdRange and any 612

appropriate validation. 613

EXAMPLE: The following code block demonstrates a parameter, “CameraZoom”, where the allowed value is 614

range of positive integers. Enclosing tags (which may vary) are omitted. 615

<name>CameraZoom</name> 616
<type>xs:positiveInteger</type> 617
<readOnly>false</readOnly> 618
<supportsMultiple>false</supportsMultiple> 619
<defaultValue>auto</defaultValue> 620
<allowedValues> 621
 <allowedValue xsi:type="wsbd:WsbdRange"> 622
 <minimum>0</minimum> 623
 <maximum>100</maximum> 624
 </allowedValue> 625
</allowedValues> 626

 627

Configurable parameters with no restrictions on its value must not include this element. 628

3.5 WsbdRange 629

A WsbdRange is a container used to describe a range of data, and whether the upper and lower bounds are 630

exclusive. The upper and lower bounds shall be inclusive by default. 631

<xs:complexType name="WsbdRange"> 632
 <xs:sequence> 633
 <xs:element name="minimum" type="xs:anyType" /> 634
 <xs:element name="maximum" type="xs:anyType" /> 635
 <xs:element name="minimumIsExclusive" type="xs:boolean" minOccurs="0" /> 636
 <xs:element name="maximumIsExclusive" type="xs:boolean" minOccurs="0" /> 637
 </xs:sequence> 638
</xs:complexType> 639

 640

EXAMPLE: An example range of numbers from 0 to 100. The minimum is exclusive while the maximum is 641

inclusive. Enclosing tags (which may vary) are omitted. 642

<minimum>0</minimum> 643
<maximum>100</maximum> 644
<minimumIsExclusive>true</minimumIsExclusive> 645
<maximumIsExclusive>false</maximyumIsExclusive> 646

 647

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

18

DRAFT

3.5.1.1 Element Summary 648

The following is a brief informative description of each WsbdRange element. 649

Element Description
minimum The lower bound of the range.
maximum The upper bound of the range.

minimumIsExclsive Boolean indicating whether the lower bound is exclusive or not. This is true by
default.

maximumIsExclusive Boolean indicating whether the upper bound is exclusive or not. This is true by
default.

 650

3.6 WsbdStringArray 651

A WsbdStringArray is a generic container used to hold a collection of strings. 652

<xs:complexType name="WsbdStringArray"> 653
 <xs:sequence> 654
 <xs:element minOccurs="0" maxOccurs="unbounded" name="element" nillable="true" 655
type="xs:string"/> 656
 </xs:sequence> 657
</xs:complexType> 658

EXAMPLE: Each line in the following code fragment is an example of a valid WsbdStringArray. Enclosing tags 659

(which may vary) are omitted. 660

<element>sessionId</element> 661
<element>value1</element><element>value2</element> 662
<element>leftThumb</element><element>rightThumb</element> 663

3.7 WsbdUuidArray 664

A WsbdUuidArray is a generic container used to hold a collection of UUIDs. 665

<xs:complexType name="WsbdUuidArray"> 666
 <xs:sequence> 667
 <xs:element minOccurs="0" maxOccurs="unbounded" name="element" nillable="true" 668
type="wsbd:uuid" /> 669
 </xs:sequence> 670
</xs:complexType> 671

EXAMPLE: The following code fragment is an example of a single WsbdUuidArray with three elements. 672

Enclosing tags (which may vary) are omitted. 673

<element>E47991C3-CA4F-406A-8167-53121C0237BA</element> 674
<element>10fa0553-9b59-4D9e-bbcd-8D209e8d6818</element> 675
<element>161FdBf5-047F-456a-8373-D5A410aE4595</element> 676

3.8 WsbdStatus 677

The WsbdStatus represents a common enumeration for communicating state information about a service. 678

<xs:simpleType name="WsbdStatus"> 679

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

19

DRAFT

 <xs:restriction base="xs:string"> 680
 <xs:enumeration value="success" /> 681
 <xs:enumeration value="failure" /> 682
 <xs:enumeration value="invalidId" /> 683
 <xs:enumeration value="canceled" /> 684
 <xs:enumeration value="canceledWithSensorFailure" /> 685
 <xs:enumeration value="sensorFailure" /> 686
 <xs:enumeration value="lockNotHeld" /> 687
 <xs:enumeration value="lockHeldByAnother " /> 688
 <xs:enumeration value="initializationNeeded" /> 689
 <xs:enumeration value="configurationNeeded" /> 690
 <xs:enumeration value="sensorBusy" /> 691
 <xs:enumeration value="sensorTimeout" /> 692
 <xs:enumeration value="unsupported" /> 693
 <xs:enumeration value="badValue" /> 694
 <xs:enumeration value="noSuchParameter" /> 695
 <xs:enumeration value="preparingDownload" /> 696
 </xs:restriction> 697
</xs:simpleType> 698

3.8.1.1 Definitions 699

The following table defines all of the potential values for the WsbdStatus enumeration. 700

Value Description
success The operation completed successfully.
failure The operation failed. The failure was due to a web service (as opposed to a

sensor error).
invalidId The provided id is not valid. This can occur if the client provides a (session or

capture) id that is either:

(a) unknown to the server (i.e., does not correspond to a known registration
or capture result), or

(b) the session has been marked inactive because too much time has passed
between operations associated with the provided (session) id

canceled The operation was canceled.

NOTE: A sensor service might cancel its own operation if it is taking too long.
This can happen if a service maintains its own internal timeout that is shorter
than a sensor timeout.

canceledWithSensorFailure The operation was canceled, but during (and perhaps because of)
cancellation, a sensor failure occurred.

This particular status accommodates for hardware that may not natively
support cancellation.

sensorFailure The operation could not be performed because of a biometric sensor (as
opposed to web service) failure.

NOTE: Clients that receive a status of sensorFailure should assume that the
sensor will need to be reinitialized in order to restore normal operation.

lockNotHeld The operation could not be performed because the client does not hold the
lock.

NOTE: This status implies that at the time the lock was queried, no other
client currently held the lock. However, this is not a guarantee that any
subsequent attempts to obtain the lock will succeed.

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

20

DRAFT

lockHeldByAnother The operation could not be performed because another client currently holds
the lock.

initializationNeeded The operation could not be performed because the sensor requires
initialization.

configurationNeeded The operation could not be performed because the sensor requires
configuration.

sensorBusy The operation could not be performed because the sensor is currently
performing another task.

NOTE: Services may self-initiate an activity that triggers a sensorBusy result.
That is, it may not be possible for a client to trace back a sensorBusy status to
any particular operation. An automated self-check, heartbeat, or other
activitity such as a data transfer may place the target biometric sensor into a
“busy” mode. (See §5.13.2.2 for information about post-acquisition
processing.)

sensorTimeout The operation was not performed because the biometric sensor experienced a
timeout.

NOTE: The most common cause of a sensor timeout would be a lack of
interaction with a sensor within an expected timeframe.

unsupported The service does not support the requested operation.
badValue The operation could not be performed because a value provided for a

particular parameter was either (a) an incompatible type or (b) outside of an
acceptable range.

noSuchParameter The operation could not be performed because the service did not recognize
the name of a provided parameter.

preparingDownload The operation could not be performed because the service is currently
preparing captured data for download. (See §5.13.2.2)

Many of the permitted status values have been designed specifically to support physically separate 701

implementations—a scenario where it is easier to distinguish between failures in the web service and failures 702

in the biometric sensor. This is not to say that within an integrated implementation such a distinction is not 703

possible, only that some of the status values are more relevant for physically separate versions. 704

For example, a robust service would allow all sensor operations to be canceled with no threat of a failure. 705

Unfortunately, not all commercial, off-the-shelf (COTS) sensors natively support cancellation. Therefore, the 706

canceledWithSensorFailure status is offered to accommodate this. Implementers can still offer cancellation, 707

but have a mechanism to communicate back to the client, that sensor initialization might be required. 708

3.9 WsbdResult 709

Unless a service returns with a HTTP error, all WS-BD operations must reply with a HTTP message that 710

contains a WsbdResult that conforms to the following XML Schema snippet. 711

<xs:complexType name="WsbdResult"> 712
 <xs:sequence> 713
 <xs:element minOccurs="1" name="status" type="wsbd:WsbdStatus"/> 714
 <xs:element minOccurs="0" name="badFields " nillable="true" type="wsbd:WsbdStringArray"/> 715
 <xs:element minOccurs="0" name="captureIds " nillable="true" type="wsbd:WsbdUuidArray"/> 716
 <xs:element minOccurs="0" name="metadata" nillable="true" type="wsbd:WsbdDictionary"/> 717
 <xs:element minOccurs="0" name="message" nillable="true" type="xs:string"/> 718
 <xs:element minOccurs="0" name="sensorData" nillable="true" type="xs:base64Binary"/> 719

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

21

DRAFT

 <xs:element minOccurs="0" name="sessionId" nillable="true" type="wsbd:uuid"/> 720
 </xs:sequence> 721
</xs:complexType> 722

 Terminology Shorthand 3.9.1723

Since a WsbdResult is the intended outcome of all requests, this document may state that an operation 724

“returns” a particular status value. This is shorthand for a WsbdResult output payload with a status element 725

containing that value. 726

EXAMPLE: The following output payload “returns success”. Enclosing tags (which may vary) are omitted. 727

<status>success<status> 728

 729

Likewise, the same shorthand is implied by a client “receiving” a status, or an operation “yielding” a status. 730

 Required Elements 3.9.2731

Notice that from a XML Schema validation perspective [XSDPart1], a schema-valid WsbdResult must contain a 732

status element, and may or may not contain any of the remaining elements. 733

The specific permitted elements of a WsbdResult are determined via a combination of (a) the operation, and 734

(b) the result’s status. That is, different operations will have different requirements on which elements are 735

permitted or forbidden, depending on that operation’s status. 736

EXAMPLE: As will be detailed later (§5.3.4.1 and §5.5.4.1), a register operation returning a status of 737

success must also populate the sessionId element. However, a try lock operation that returns a 738

status of success cannot populate any element other than status. 739

DESIGN NOTE: An XML inheritance hierarchy could have been used to help enforce which elements are 740

permitted under which circumstances. However, a de-normalized representation (in which all of the possible 741

elements are valid with respect to a schema) was used to simplify client and server implementation. Futher, 742

this reduces the burden of managing an object hierarchy for the sake of enforcing simple constraints. 743

 Element Summary 3.9.3744

The following is a brief informative description of each WsbdResult element. 745

Element Description
status The disposition of the operation. All WsbdResults must contain a status

element. (Used in all operations.)
badFields The list of fields that contain invalid or ill-formed values. (Used in almost all

operations.)
captureIds Identifiers that may be used to obtain data acquired from a capture operation

(§5.12, §5.13).
metadata Information about the target biometric sensor (§5.10, §5.11).
message A string providing informative detail regarding the output of an operation.

(Used in almost all operations.)
sensorData The biometric data corresponding to a particular capture identifier (§5.13,

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

22

DRAFT

§5.15).
sessionId A unique session identifier (§5.3).

3.10 Validation 746

The provided XML schemas may be used for initial XML validation. It should be noted that these are not strict 747

schema definitions and were designed for easy consumption of web service/code generation tools. Additional 748

logic should be used to evaluate the contents and validity of the data where the schema falls short. For 749

example, additional logic will be necessary to verify the contents of a WsbdResult are accurate as there is not 750

a different schema definition for every combination of optional and mandatory fields. 751

A service must have separate logic validating parameters and their values during configuration. The type of 752

any allowed values might not correspond with the type of the parameter. For example, if the type of the 753

parameter is an integer and an allowed value is a WsbdRange, the service must handle this within the service 754

as it cannot be appropriately validated using XML schema. 755

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

23

DRAFT

4 Metadata 756

Metadata can be broken down into three smaller categories: service information, sensor information or 757

configuration, and capture information. Metadata can be returned in two forms: as a key/value pair within a 758

WsbdDictionary or as parameter information within a WsbdParameter. 759

4.1 Service Information 760

Service information includes read-only parameters unrelated to the sensor as well as parameters that can be 761

set. Updating the values of a parameter should be done in the set configuration operation. 762

Service information must include the required parameters listed in Appendix A; including the optional 763

parameters is highly recommended. Each parameter shall be exposed as a WsbdParameter (§3.4). 764

Parameters listed in Appendix A shall be exposed as read-only parameters. 765

Read-only parameters shall specify its current value by populating the default value field with the value. 766

Additionally, read-only parameters must not provide any allowed values. Allowed values are reserved to 767

specify acceptable information which may be passed to the service for configuration. 768

EXAMPLE: An example snippet from a get service info call demonstrating a read-only parameter. Enclosing 769

tags (which may vary) are omitted. 770

<name>inactivityTimeout</name> 771
<type>xs:nonNegativeInteger</type> 772
<readOnly>true</readOnly> 773
<supportsMultiple>false</supportsMultiple> 774
<defaultValue>600</defaultValue> 775

 776

Configurable parameters, or those which are not read only, must provide information for the default value as 777

well as allowed values. To specify that an allowed value is within range of numbers, refer to WsbdRange 778

(§3.5). 779

EXAMPLE: An example snippet from a get service info call. The target service supports a configurable 780

parameter called “ImageWidth”. Enclosing tags (which may vary) are omitted. 781

<name>ImageWidth</name> 782
<type>xs:positiveInteger</type> 783
<readOnly>false</readOnly> 784
<supportsMultiple>false</supportsMultiple> 785
<defaultValue>800</defaultValue> 786
<allowedValues> 787
 <allowedValue>640</allowedValue> 788
 <allowedValue>800</allowedValue> 789
 <allowedValue>1024</allowedValue> 790
</allowedValue> 791

 792

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

24

DRAFT

4.2 Configuration 793

A configuration consists of parameters specific to the sensor or post-processing related to the final capture 794

result. This must only consist of key/value pairs. It must not include other information about the parameters, 795

such as allowed values or read-only status. 796

Restrictions for each configuration parameter can be discovered through the get service info operation. 797

EXAMPLE: An example configuration of only three parameters. Enclosing tags (which may vary) are omitted. 798

<item> 799
 <key>ImageHeight</key> 800
 <value>480</value> 801
</item> 802
<item> 803
 <key>ImageWidth</key> 804
 <value>640</value> 805
</item> 806
<item> 807
 <key>FrameRate</key> 808
 <value>20</value> 809
</item> 810

 811

4.3 Captured Data 812

Metadata related to a particular capture operation shall include the configuration of the sensor at the time of 813

capture. Static parameters related to the service should not be included in the metadata for a capture result. 814

EXAMPLE: Example metadata for a particular capture. Note that this includes parameters related to the 815

sensor. Enclosing tags (which may vary) are omitted. 816

<item> 817
 <key>SerialNumber</key> 818
 <value>98A8N830LP332-V244</value> 819
</item> 820
<item> 821
 <key>CaptureDate</key> 822
 <value>2011-01-01T15:30:00Z</value> 823
</item> 824
<item> 825
 <key>ImageHeight</key> 826
 <value>600</value> 827
</item> 828
<item> 829
 <key>ImageWidth</key> 830
 <value>800</value> 831
</item> 832
<item> 833
 <key>ContentType</key> 834
 <value>image/bmp</value> 835
</item> 836

 837

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

25

DRAFT

5 Operations 838

This section provides detailed information regarding each WS-BD operation. 839

5.1 General Usage Notes 840

The following usage notes apply to all operations, unless the detailed documentation for a particular 841

operation conflicts with these general notes, in which case the detailed documentation takes precedence. 842

1. Failure messages are informative. If an operation fails, then the message element may contain an 843

informative message regarding the nature of that failure. The message is for informational purposes 844

only—the functionality of a client must not depend on the contents of the message. 845

2. Results must only contain required and optional elements. Services must only return elements 846

that are either required or optional. All other elements must not be contained in the result, even if 847

they are empty elements. Likewise, to maintain robustness in the face of a non-conformant service, 848

clients should ignore any element that is not in the list of permitted WsbdResult elements for a 849

particular operation call. 850

3. Sensor operations must not occur within a non-sensor operation. Services may only perform any 851

sensor control within the operations: 852

a. get service info, 853

b. initialize, 854

c. get configuration, 855

d. set configuration, 856

e. capture, and 857

f. cancel. 858

4. Sensor operations must require locking. Even if a service implements a sensor operation without 859

controlling the target biometric sensor, the service must require that a locked service for the 860

operation to be performed. 861

5. Content Type. Clients must make HTTP requests using a content type of application/xml [RFC2616, 862

§14]. 863

 Precedence of Status Enumerations 5.1.1864

To maximize the amount of information given to a client when an error is obtained, and to prevent different 865

implementations from exhibiting different behaviors, all WS-BD services must return status values according 866

to a fixed priority. In other words, when multiple status messages might apply, a higher-priority status must 867

always be returned in favor of a lower-priority status. 868

The status priority, listed from highest priority (“invalidId”) to lowest priority (“success”) is as follows: 869

1. invalidId 870

2. noSuchParameter 871

3. badValue 872

4. unsupported 873

5. canceledWithSensorFailure 874

6. canceled 875

7. lockHeldByAnother 876

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

26

DRAFT

8. lockNotHeld 877

9. sensorBusy 878

10. sensorFailure 879

11. sensorTimeout 880

12. initializationNeeded 881

13. configurationNeeded 882

14. preparingDownload 883

15. failure 884

16. success 885

 886

Notice that success is the lowest priority—an operation should only be deemed successful if no other kinds of 887

(non-successful) statuses apply. 888

The following examples illustrates how this ordering affects the status returned in a situation in which 889

multiple 890

EXAMPLE: Figure 5 illustrates that client cannot receive a “sensorBusy” status if it does not hold the lock, 891

even if a sensor operation is in progress (recall from §2.5.5 that sensor operations require holding the 892

lock). 893

 894

Figure 5. Example illustrating how a client cannot recieve a "sensorBusy" status if it does not hold the lock. 895

EXAMPLE: Suppose there are two clients; Client A and Client B. Client A holds the lock and starts 896

initialization on (Step 1–3). Immediately after Client A initiates capture, Client B (Step 4) tries to obtain 897

the lock while Client A is still capturing. In this situation, the valid statuses that could be returned to 898

Client B are “sensorBusy” (since the sensor is busy performing a capture) and “lockHeldByAnother” (since 899

Client A holds the lock). In this case, the service returns “lockHeldByAnother” (Step 5) since 900

“lockHeldByAnother” is higher priority than “sensorBusy.” 901

Client A Server Client B

Lock owner = (none)

1:lock

{A1234567...}

Lock owner = {A1234567...}

2:lock

success

3:initialize

{A1234567...}

4:lock

{B890B123...}

5:lock

lockHeldByAnother

6:initialize

success

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

27

DRAFT

 Parameter Failures 5.1.2902

Services must distinguish among invalidId, noSuchParameter, badValue, and unsupported according to the 903

following rules. These rules are presented here in the order of precedence that matches the previous 904

subsection. 905

1. Is a recognizable UUID provided? If the operation requires a UUID as an input URL parameter, and 906

provided value is not an UUID (i.e., the UUID is not parseable), then the service must return badValue. 907

Additionally, the WsbdResult’s badFields list must contain the name of the offending parameter 908

(sessionId or captureId). 909

 910

…otherwise… 911

 912

2. Is the UUID understood? If an operation requires an UUID as an input URL parameter, and the 913

provided value is a UUID, but cannot accept the provided value, then the service must return 914

invalidId. Additionally, the WsbdResult’s badFields list must contain the name of the offending 915

parameter (sessionId or captureId). 916

 917

…otherwise… 918

 919

3. Are the parameter names understood? If an operation does not recognize a provided input 920

parameter name, then the service must return noSuchParameter. This behavior may differ from 921

service to service, as different services may recognize (or not recognize) different parameters. The 922

unrecognized parameter(s) must be listed in the WsbdResult’s badFields list. 923

 924

…otherwise… 925

 926

4. Are the parameter values acceptable? If an operation recognizes all of the provided parameter 927

names, but cannot accept a provided value because it is (a) and inappropriate type, or (b) outside the 928

range advertised by the service (§4.1), the then service must return badValue. The parameter names 929

associated with the unacceptable values must be listed in the WsbdResult’s badFields list. Clients 930

are expected to recover the bad values themselves by reconciling the WsbdResult corresponding to 931

the offending request. 932

 933

…otherwise… 934

 935

5. Is the request supported? If an operation accepts the parameter names and values, but the 936

particular request is not supported by the service or the target biometric sensor, then the service 937

must return unsupported. The parameter names that triggered this determination must be listed in 938

the WsbdResult’s badFields list. By returning multiple fields, a service is able to imply that a 939

particular combination of provided values is unsupported. 940

 941

NOTE: It may be helpful to think of invalidId as a special case of badValue reserved for URL parameters of 942

type UUID. 943

 Visual Summaries 5.1.3944

The following two tables provide informative visual summaries of WS-BD operations. These visual summaries 945

are an overview; they are not authoritative. (§5.3–5.16 are authoritative.) 946

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

28

DRAFT

5.1.3.1 Input & Output 947

The following table represents a visual summary of the inputs and outputs corresponding to each operation. 948

Operation inputs are indicated in the “URL Fragment” and “Input Payload” columns. Operation inputs take the 949

form of either (a) a URL parameter, with the parameter name shown in “curly brackets” (“{“ and “}”) within 950

the URL fragment (first column), and/or, (b) a input payload (defined in §1.1). 951

Operation outputs are provided via WsbdResult, which is contained in the body of an operation’s HTTP 952

response. 953

 954

URL Fragment

(Includes inputs)

M
e
th

o
d

Operation
In

p
u

t

p
a
y
lo

a
d

Id
e
m

p
o

te
n

t

S
e
n

so
r

O
p

e
ra

ti
o

n

Permitted WsbdResult Elements

(within output payload)

D
et

ai
le

d
 D

o
cu

m
en

ta
ti

o
n

 (
§
)

st
a
tu

s

b
a
d

F
ie

ld
s

se
ss

io
n
Id

m
e
ta

d
a
ta

ca
p

tu
re

Id
s

se
n

so
rD

a
ta

register POST register none

���� ����

 5.3

register/{sessionId} DELETE unregister none �

���� ����

 5.4

lock/{sessionId} POST try lock none �

���� ����

 5.5

lock/{sessionId} PUT steal lock none �

���� ����

 5.6

lock/{sessionId} DELETE unlock none �

���� ����

 5.7

info GET get service info none �

����

����

 5.8

initialize/{sessionId} POST initialize none � � ���� ����

 5.9

configure/{sessionId}
GET get configuration none � � ���� ����

����

 5.10

POST set configuration config � � ���� ����

 5.11

capture/{sessionId} POST capture none

� ���� ����

���� 5.12

download/{captureid} GET download none �

���� ����

����

���� 5.13

download/{captureid}/info GET get download info none � ���� 5.14

download/{captureid}/{maxSize} GET thrifty download none �

���� ����

����

���� 5.15

cancel/{sessionId} POST cancel operation none � � ���� ����

 5.16

The message element is not shown in this table; when it appears it is always optional. 955

Presence of a symbol in a table cell indicates that operation is idempotent (�), a sensor operation (�), and 956

which elements may be present in the operation's WsbdResult (����). Likewise, the lack of a symbol in a table 957

cell indicates the operation is not idempotent, not a sensor operation, and which elements of the operation's 958

WsbdResult are forbidden. 959

EXAMPLE: The capture operation (fifth row from the bottom) is not idempotent, but is a sensor 960

operation. The output may contain the elements status, badFields, and/or captureIds in its 961

WsbdResult. The detailed information regarding the WsbdResult for capture, (i.e., which elements are 962

specifically permitted under what circumstances) is found in §5.12. 963

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

29

DRAFT

5.1.3.2 Permitted Status Values 964

The following table provides a visual summary of the status values permitted. 965

Operation

Description

su
cc

e
ss

fa
il

u
re

in
v
a
li

d
Id

ca
n

ce
le

d

ca
n

ce
le

d
W

it
h

S
e
n

so
rF

a
il

u
re

se
n

so
rF

a
il

u
re

lo
ck

N
o
tH

e
ld

lo
ck

H
e
ld

B
y
A

n
o

th
e
r

in
it

ia
li

za
ti

o
n

N
ee

d
ed

c
o
n
f
i
g
u
r
a
t
i
o
n
N
e
e
d
e
d

se
n

so
rB

u
sy

se
n

so
rT

im
e
o

u
t

u
n

su
p
p

o
rt

e
d

b
a
d

V
a
lu

e

n
o

S
u

ch
P
a
ra

m
e
te

r

p
re

p
a
ri

n
g
D

o
w

n
lo

a
d

register � �

unregister � � �

�

����

try lock � � �

����

����

steal lock � � �

����

unlock � � �

����

����

get service info � �

initialize � � � ���� ���� ���� ���� ����

���� ����

����

get configuration ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����

set configuration ���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ����

capture � � � ���� ���� ���� ���� ���� ���� ���� ���� ����

����

download � � �

����

����

get download info � � � � �

thrifty download � � �

���� ����

����

cancel � � �

���� ����

����

The presence (absence) symbol in a cell indicates that the respective status may (may not) be returned by the 966

corresponding operation. 967

EXAMPLE: The register operation may only return a WsbdResult with a WsbdStatus that contains 968

either success or failure. The unregister operation may only return success, failure, invalidId, 969

sensorBusy, or badValue. 970

5.2 Documentation Conventions 971

Each WS-BD operation is documented according to the following conventions. 972

 General Information 5.2.1973

Each operation begins with the following tabular summary: 974

Description A short description of the operation
HTTP Method The HTTP method that triggers the operation, i.e., GET, POST, PUT, or DELETE
URL Template The suffix used to access the operation. These take the form

resourceName

or

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

30

DRAFT

resourceName/{URL_parameter_1}/…/{URL_parameter_N}

Each parameter, {URL_parameter...} must be replaced, in-line with that
parameter’s value.

Parameters have no explicit names, other than defined by this document or
reported back to the client within the contents of a badFields element.

It is assumed that consumers of the service will prepend the URL to the service
endpoint as appropriate.

EXAMPLE: The resource resourceName hosted at the endpoint

http://example.com/Service

would be accessible via

http://example.com/Service/resourceName

URL Parameters A description of the URL-embedded operation parameters. For each parameter
the following details are provided:

• the name of the parameter

• the expected data type (§3)

• a description of the parameter
Input Payload A description of the content, if any, to be posted to the service as input to an

operation.
Idempotent Yes—the operation is idempotent (§2.5.7).

No—the operation is not idempotent.
Sensor Operation

(Lock Required)

Yes—the service may require exclusive control over the target biometric sensor.
No—this operation does not require a lock.

Given the concurrency model (§2.5.5) this value doubles as documentation as to
whether or not a lock is required

 WsbdResult Summary 5.2.2975

This subsection summarizes the various forms of a WsbdResult that may be returned by the operation. Each 976

row represents a distinct combination of permitted values & elements associated with a particular status. An 977

operation that returns success may also provide additional information other than status. 978

success status="success"
failure status="failure"

message*=informative message describing failure
[status value] status=status literal

[required element name]=description of permitted contents of the element
[optional element name]*=description of permitted contents of the element

…

…

For each row, the left column contains a permitted status value, and the right column contains a summary of 979

the constraints on the WsbdResult when the status element takes that specific value. The vertical ellipses 980

signify that the summary table may have additional rows that summarize a permitted status value. 981

Element names suffixed with a ‘*’ indicate that the element is optional. 982

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

31

DRAFT

 Usage Notes 5.2.3983

Each of the following subsections describes behaviors & requirements that are specific to its respective 984

operation. 985

 Unique Knowledge 5.2.4986

For each operation, there is a brief description of whether or not the operation affords an opportunity for the 987

server or client to exchange information unique to a particular implementation. The term “unique 988

knowledge” is used to reflect the definition of interoperability referenced in §2.2. 989

 Return Values Detail 5.2.5990

This subsection details the various return values that the operation may return. For each permitted status 991

value, the following table details the WsbdResult requirements: 992

Status Value The particular status value

Condition The service accepts the registration request
Required Elements A list of the required elements. Listed for each required element is the element

name and its expected contents.

Optional Elements A list of the required elements. Listed for each optional element is the element
name and its expected contents.

Constraints and information unique to the particular operation/status combination may follow the table, but 993

some status values have no trailing explanatory text. 994

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

32

DRAFT

5.3 Register 995

Description Open a new client-server session
HTTP Method POST
URL Template /register

URL Parameters None
Input Payload None

Idempotent No
Sensor Operation No

 WsbdResult Summary 5.3.1996

success status="success"

sessionId=session id (UUID, §3.2)
failure status="failure"

message*=informative message describing failure

 Usage Notes 5.3.2997

Register provides a unique identifier that can be used to associate a particular client with a server. 998

In a sequence of operations with a service, a register operation is likely one of the first operations performed 999

by a client (get service info being the other). It is expected (but not required) that a client would perform a 1000

single registration during that client’s lifetime. 1001

DESIGN NOTE: By using an UUID, as opposed to the source IP address, a server can distinguish among clients 1002

sharing the same originating IP address (i.e., multiple clients on a single machine, or multiple machines 1003

behind a firewall). Additionally, a UUID allows a client (or collection of clients) to determine client identity 1004

rather than enforcing a particular model (§2.5.3). 1005

 Unique Knowledge 5.3.31006

As specified, the register operation cannot be used to provide or obtain knowledge about unique 1007

characteristics of a client or service. 1008

 Return Values Detail 5.3.41009

The register operation must return a WsbdResult according to the following constraints. 1010

5.3.4.1 Success 1011

Status Value success
Condition The service accepts the registration request

Required Elements status (WsbdStatus, §3.8)
the literal “success”

sessionId (UUID, §3.2)
an identifier that can be used to identify a session

Optional Elements None

The “register” operation must not ever provide a sessionId of 00000000-0000-0000-0000-000000000000. 1012

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

33

DRAFT

5.3.4.2 Failure 1013

Status Value failure
Condition The service cannot accept the registration request

Required Elements status (WsbdStatus, §3.8)
the literal “failure”

Optional Elements message (xs:string, [XSDPart2])
an informative description of the nature of the failure

Registration might fail if there are too many sessions already registered with a service. The message element 1014

must only be used for informational purposes. Clients must not depend on particular contents of the message 1015

element to control client behavior. 1016

See §A.1 for how sensor metadata can be used to determine the maximum number of current sessions a 1017

service can support. 1018

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

34

DRAFT

5.4 Unregister 1019

Description Close a client-server session
HTTP Method DELETE
URL Template /register/{sessionId}

URL Parameters {sessionId} (UUID, §3.2)
Identity of the session to remove

Input Payload Not applicable
Idempotent Yes

Sensor Operation No

 WsbdResult Summary 5.4.11020

success status="success"

failure status="failure"

message*=informative message describing failure
sensorBusy status="sensorBusy"

badValue status="badValue"

badFields={"sessionId"} (WsbdStringArray, §3.6)

 Usage Notes 5.4.21021

Unregister closes a client-server session. Although not strictly necessary, clients should unregister from a 1022

service when it is no longer needed. Services should support (on the order of) thousands of concurrent 1023

sessions, but this cannot be guaranteed, particularly if the service is running within limited computational 1024

resources. Conversely, clients should assume that the number of concurrent sessions that a service can 1025

support is limited. (See §A.1 for details on connection metadata.) 1026

5.4.2.1 Inactivity 1027

A service may automatically unregister a client after a period of inactivity, or if demand on the service 1028

requires that least-recently used sessions be dropped. This is manifested by a client receiving a status of 1029

invalidId without a corresponding unregistration. Services should set the inactivity timeout to a value on the 1030

order of hundreds of minutes. (See §A.1 for details on connection metadata.) 1031

5.4.2.2 Sharing Session Ids 1032

A session id is not a secret, but clients that share session ids run the risk of having their session prematurely 1033

terminated by a rogue peer client. This behavior is permitted, but discouraged. See §2.5 for more information 1034

about client identity and the assumed security models. 1035

5.4.2.3 Locks & Pending Sensor Operations 1036

If a client that holds the service lock unregisters, then a service must also release the service lock, with one 1037

exception. If the unregistering client both holds the lock and is responsible for a pending sensor operation, 1038

the service must return sensorBusy (See §5.4.4.3). 1039

 Unique Knowledge 5.4.31040

As specified, the unregister operation cannot be used to provide or obtain knowledge about unique 1041

characteristics of a client or service. 1042

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

35

DRAFT

 Return Values Detail 5.4.41043

The unregister operation must return a WsbdResult according to the following constraints. 1044

5.4.4.1 Success 1045

Status Value success
Condition The service accepted the unregistration request

Required Elements status (WsbdStatus, §3.8)
the literal “success”

Optional Elements None

If the unregistering client currently holds the service lock, and the requesting client is not responsible for any 1046

pending sensor operation, then successful unregistration must also release the service lock. 1047

As a consequence of idempotency, a session id does not need to ever have been registered successfully in 1048

order to unregister successfully. Consequently, the unregister operation cannot return a status of invalidId. 1049

5.4.4.2 Failure 1050

Status Value failure
Condition The service could not unregister the session.

Required Elements status (WsbdStatus, §3.8)
the literal “failure”

Optional Elements message (xs:string, [XSDPart2])
an informative description of the nature of the failure

In practice, failure to unregister is expected to be a rare occurrence. Failure to unregister might occur if the 1051

service experiences a fault with an external system (such as a centralized database used to track session 1052

registration and unregistration) 1053

5.4.4.3 Sensor Busy 1054

Status Value sensorBusy

Condition The service could not unregister the session because the biometric sensor is
currently performing a sensor operation within the session being unregistered.

Required Elements status (WsbdStatus, §3.8)
the literal “sensorBusy”

Optional Elements None

This status must only be returned if (a) the sensor is busy and (b) the client making the request holds the lock 1055

(i.e., the session id provided matches that associated with the current service lock). Any client that does not 1056

hold the session lock must not result in a sensorBusy status. 1057

EXAMPLE: The following sequence diagram illustrates a client that cannot unregister (Client A) and a 1058

client that can unregister (Client B). After the initialize operation completes (Step 6), Client A can 1059

unregister (Steps 7-8). 1060

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

36

DRAFT

 1061

Figure 6. Example of how an unregister operation can result in sensorBusy. 1062

5.4.4.4 Bad Value 1063

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status (WsbdStatus, §3.8)

the literal “badValue”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1064

Client A Server Client B

Lock owner = {A1234567...}

1:initialize

sessionId={A1234567...}

Client A, holding the lock, can start initialization.

2:unregister

sessionId={B890B123...}

3:unregister

success

Client B does not hold the lock, and can unregister, even
though the service is performing a sensor operation.

4:unregister

sessionId={A1234567...}

5:unregister

sensorBusy

On a separate thread, Client A makes an unregistration
request. Client A is not permitted to unregister, because
Client A both (1) holds the lock and (2) is responsible for a
pending sensor operation (initialization).

6:initialize

success

7:unregister

sessionId={A1234567...}

8:unregister

success

Now that initialization is finished, Client A can unregister.

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

37

DRAFT

5.5 Try Lock 1065

Description Try to obtain the service lock
HTTP Method PUT
URL Template /lock/{sessionId}

URL Parameters {sessionId} (UUID, §3.2)
Identity of the session requesting the service lock

Input Payload Not applicable
Idempotent Yes

Sensor Operation No

 WsbdResult Summary 5.5.11066

success status="success"

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badFields={"sessionId"} (WsbdStringArray, §3.6)
lockHeldByAnother status="lockHeldByAnother"

badValue status="badValue"

badFields={"sessionId"} (WsbdStringArray, §3.6)

 Usage Notes 5.5.21067

The try lock operation attempts to obtain the service lock. The word “try” is used to indicate that the call 1068

always returns immediately; it does not block until the lock is obtained. See §2.5.5 for detailed information 1069

about the WS-BD concurrency and locking model. 1070

 Unique Knowledge 5.5.31071

As specified, the try lock cannot be used to provide or obtain knowledge about unique characteristics of a 1072

client or service. 1073

 Return Values Detail 5.5.41074

The try lock operation must return a WsbdResult according to the following constraints. 1075

5.5.4.1 Success 1076

Status Value success
Condition The service was successfully locked to the provided session id.

Required Elements status (WsbdStatus, §3.8)
the literal “success”

Optional Elements None

Clients that hold the service lock are permitted to perform sensor operations (§2.5.5). By idempotency 1077

(§2.5.7), if a client already holds the lock, subsequent try lock operations should also return success. 1078

5.5.4.2 Failure 1079

Status Value failure
Condition The service could not be locked to the provided session id.

Required Elements status (WsbdStatus, §3.8)

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

38

DRAFT

the literal “failure”
Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must reserve a failure status to report system or internal failures and prevent the acquisition of 1080

the lock. Most try lock operations that do not succeed will not produce a failure status, but more likely a 1081

lockHeldByAnother status (See §5.5.4.4 for an example). 1082

5.5.4.3 Invalid Id 1083

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status (WsbdStatus, §3.8)
the literal “invalidId”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1084

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1085

inactivity (§5.4.4.1). 1086

See §5.1.2 for general information on how services must handle parameter failures. 1087

5.5.4.4 Lock Held by Another 1088

Status Value lockHeldByAnother
Condition The service could not be locked to the provided session id because the lock is held

by another client.
Required Elements status (WsbdStatus, §3.8)

the literal “lockHeldByAnother”
Optional Elements None

EXAMPLE: The following sequence diagram illustrates a client that cannot obtain the lock (Client B) because 1089

it is held by another client (Client A). 1090

 1091

Figure 7. Example of a scenario yielding a lockHeldByAnother result. 1092

Client A Server Client B

Lock owner = (none)

1:lock

{A1234567...}

Lock owner = {A1234567...}

2:lock

success

3:lock

{B890B123...}

4:lock

lockHeldByAnother

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

39

DRAFT

5.5.4.5 Bad Value 1093

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status (WsbdStatus, §3.8)

the literal “badValue”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1094

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

40

DRAFT

5.6 Steal Lock 1095

Description Forcibly obtain the lock away from a peer client
HTTP Method PUT
URL Template /lock/{sessionId}

URL Parameters {sessionId} (UUID, §3.2)
Identity of the session requesting the service lock

Input Payload Not applicable
Idempotent Yes

Sensor Operation No

 WsbdResult Summary 5.6.11096

success status="success"

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badFields={"sessionId"} (WsbdStringArray, §3.6)
badValue status="badValue"

badFields={"sessionId"} (WsbdStringArray, §3.6)

 Usage Notes 5.6.21097

The steal lock operation allows a client to forcibly obtain the lock away from another client that already holds 1098

the lock. The purpose of this operation is to prevent a client that experiences a fatal error from forever 1099

preventing another client access to the service, and therefore, the biometric sensor. 1100

5.6.2.1 Avoid Lock Stealing 1101

Developers and integrators should endeavor to reserve lock stealing for exceptional circumstances—such as 1102

when a fatal error prevents a client from releasing a lock. Lock stealing should not be used as the primary 1103

mechanism in which peer clients coordinate biometric sensor use. 1104

5.6.2.2 Lock Stealing Prevention Period (LSPP) 1105

To assist in coordinating access among clients and to prevent excessive lock stealing, a service may trigger a 1106

time period that forbids lock stealing for each sensor operation. For convenience, this period of time will be 1107

referred to as the lock stealing prevention period (LSPP). 1108

During the LSPP, all attempts to steal the service lock will fail. Consequently, if a client experiences a fatal 1109

failure during a sensor operation, then all peer clients need to wait until the service re-enables lock stealing. 1110

All services should implement a non-zero LSPP. The recommended time for the LSPP is on the order of 100 1111

seconds. Services that enforce an LSPP must start the LSPP immediately before sovereign sensor control is 1112

required. Conversely, services should not enforce an LSPP unless absolutely necessary. 1113

If a request provides an invalid sessionId, then the operation should return an invalidId status instead of a 1114

failure–this must be true regardless of the LSPP threshold and whether or not it has expired. A failure 1115

signifies that the state of the service is still within the LSPP threshold and the provided sessionId is valid. 1116

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

41

DRAFT

A service may reinitiate a LSPP when an operation yields an undesirable result, such as failure. This would 1117

allow a client to attempt to resubmit the request or recover without worrying about whether or not the lock is 1118

still owned by the client’s session. 1119

An LSPP ends after a fixed amount of time has elapsed, unless another sensor operation restarts the LSPP. 1120

Services should keep the length of the LSPP fixed throughout the service’s lifecycle. It is recognized, however, 1121

that there may be use cases in which a variable LSPP timespan is desirable or required. Regardless, when 1122

determining the appropriate timespan, implementers should carefully consider the tradeoffs between 1123

preventing excessive lock stealing, versus forcing all clients to wait until a service re-enables lock stealing. 1124

5.6.2.3 Cancellation & (Lack of) Client Notification 1125

Lock stealing must have no effect on any currently running sensor operations. It is possible that a client 1126

initiates a sensor operation, has its lock stolen away, yet the operation completes successfully. Subsequent 1127

sensor operations would yield a lockNotHeld status, which a client could use to indicate that their lock was 1128

stolen away from them. Services should be implemented such that the LSPP is longer than any sensor 1129

operation. 1130

 Unique Knowledge 5.6.31131

As specified, the steal lock operation cannot be used to provide or obtain knowledge about unique 1132

characteristics of a client or service. 1133

 Return Values Detail 5.6.41134

The steal lock operation must return a WsbdResult according to the following constraints. 1135

5.6.4.1 Success 1136

Status Value success
Condition The service was successfully locked to the provided session id.

Required Elements status (WsbdStatus, §3.8)
the literal “success”

Optional Elements None

See §2.5.5 for detailed information about the WS-BD concurrency and locking model. Cancellation must have 1137

no effect on pending sensor operations (§5.6.2.3). 1138

5.6.4.2 Failure 1139

Status Value failure
Condition The service could not be locked to the provided session id.

Required Elements status (WsbdStatus, §3.8)
the literal “failure”

Optional Elements message (xs:string, [XSDPart2])
an informative description of the nature of the failure

Most steal lock operations that yield a failure status will do so because the service receives a lock stealing 1140

request during a lock stealing prevention period (§5.6.2.2). Services must also reserve a failure status for 1141

other non-LSPP failures that prevent the acquisition of the lock. 1142

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

42

DRAFT

Implementers may choose to use the optional message field to provide more information to an end-user as to 1143

the specific reasons for the failure. However (as with all other failure status results), clients must not 1144

depend on any particular content to make this distinction. 1145

5.6.4.3 Invalid Id 1146

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status (WsbdStatus, §3.8)
the literal “invalidId”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1147

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1148

inactivity (§5.4.4.1). 1149

See §5.1.2 for general information on how services must handle parameter failures. 1150

5.6.4.4 Bad Value 1151

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status (WsbdStatus, §3.8)

the literal “badValue”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1152

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

43

DRAFT

5.7 Unlock 1153

Description Release the service lock
HTTP Method DELETE
URL Template /lock/{sessionId}

URL Parameters {sessionId} (UUID, §3.2)
Identity of the session releasing the service lock

Input Payload None
Idempotent Yes

Sensor Operation No

 WsbdResult Summary 5.7.11154

success status="success"

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badFields={"sessionId"} (WsbdStringArray, §3.6)
badValue status="badValue"

badFields={"sessionId"} (WsbdStringArray, §3.6)

 Usage Notes 5.7.21155

The unlock operation release a service lock, making locking available to other clients. 1156

See §2.5.5 for detailed information about the WS-BD concurrency and locking model. 1157

 Unique Knowledge 5.7.31158

As specified, the unlock operation cannot be used to provide or obtain knowledge about unique 1159

characteristics of a client or service. 1160

 Return Values Detail 5.7.41161

The steal lock operation must return a WsbdResult according to the following constraints. 1162

5.7.4.1 Success 1163

Status Value success
Condition The service returned to an unlocked state.

Required Elements status (WsbdStatus, §3.8)
the literal “success”

Optional Elements None

Upon releasing the lock, a client is no longer permitted to perform any sensor operations (§2.5.5). By 1164

idempotency (§2.5.7), if a client already has released the lock, subsequent unlock operations should also 1165

return success. 1166

5.7.4.2 Failure 1167

Status Value failure
Condition The service could not be transitioned into an unlocked state.

Required Elements status (WsbdStatus, §3.8)
the literal “failure”

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

44

DRAFT

Optional Elements message (xs:string, [XSDPart2])
an informative description of the nature of the failure

Services must reserve a failure status to report system or internal failures and prevent the release of the 1168

service lock. The occurrence of unlock operations that fail is expected to be rare. 1169

5.7.4.3 Invalid Id 1170

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status (WsbdStatus, §3.8)
the literal “invalidId”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1171

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1172

inactivity (§5.4.4.1). 1173

See §5.1.2 for general information on how services must handle parameter failures. 1174

5.7.4.4 Bad Value 1175

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status (WsbdStatus, §3.8)

the literal “badValue”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1176

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

45

DRAFT

5.8 Get Service Info 1177

Description Retrieve metadata about the service that does not depend on session-specific
information, or sovereign control of the target biometric sensor

HTTP Method GET

URL Template /info

URL Parameters None
Payload Not applicable

Idempotent Yes
Sensor Operation No

 WsbdResult Summary 5.8.11178

success status="success"

metadata=dictionary containing service metadata (WsbdDictionary, §3.3)
failure status="failure"

message*=informative message describing failure

 Usage Notes 5.8.21179

The get service info operation provides information about the service and target biometric sensor. This 1180

operation must return information that is both (a) independent of session, and (b) does not require sovereign 1181

biometric sensor control. In other words, services must not control the target biometric sensor during a get 1182

service info operation itself. Implementations may (and are encouraged to) use service startup time to query 1183

the biometric sensor directly to create a cache of information and capabilities for get service info operations. 1184

The service should keep a cache of sensor and service metadata to reduce the amount of operations which 1185

query the sensor as this can be a lengthy operation. 1186

The get service info operation does not require that a client be registered with the service. Unlike other 1187

operations, it does not take a session id as a URL parameter. 1188

See §4.1 for information about the metadata returned from this operation. 1189

 Unique Knowledge 5.8.31190

As specified, the get service info can be used to obtain knowledge about unique characteristics of a service. 1191

Through get service info, a service may expose implementation and/or service-specific configuration 1192

parameter names and values that are not described in a conformance profile [SP500-288A]. 1193

 Return Values Detail 5.8.41194

The get service info operation must return a WsbdResult according to the following constraints. 1195

5.8.4.1 Success 1196

Status Value success
Condition The service provides service metadata

Required Elements status (WsbdStatus, §3.8)
the literal "success"

metadata (WsbdDictionary, §3.3)

information about the service metadata

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

46

DRAFT

Optional Elements None

5.8.4.2 Failure 1197

Status Value failure
Condition The service cannot provide service metadata

Required Elements status (WsbdStatus, §3.8)
the literal “failure”

Optional Elements message (xs:string, [XSDPart2])
an informative description of the nature of the failure

 1198

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

47

DRAFT

5.9 Initialize 1199

Description Initialize the target biometric sensor
HTTP Method POST

URL Template /initialize/{sessionId}

URL Parameters {sessionId} (UUID, §3.2)
Identity of the session requesting initialization

Input Payload None
Idempotent Yes

Sensor Operation Yes

 WsbdResult Summary 5.9.11200

success status="success"

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badFields={"sessionId"} (WsbdStringArray, §3.6)
canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

badValue status="badValue"

badFields={"sessionId"} (WsbdStringArray, §3.6)

 Usage Notes 5.9.21201

The initialize operation prepares the target biometric sensor for (other) sensor operations. 1202

Some biometric sensors have no requirement for explicit initialization. Services exposing such a sensor should 1203

immediately return a success result. 1204

Although not strictly necessary, services should directly map this operation to the initialization of the target 1205

biometric sensor, unless the service can reliably determine that the target biometric sensor is in a fully 1206

operational state. In other words, a service may decide to immediately return success if there is a reliable 1207

way to detect if the target biometric sensor is currently in an initialized state. This style of “short circuit” 1208

evaluation could reduce initialization times. However, a service that always initializes the target biometric 1209

sensor would enable the ability of a client to attempt a manual reset of a sensor that has entered a faulty 1210

state. This is particularly useful in physically separated service implementations where the connection 1211

between the target biometric sensor and the web service host may be less reliable than an integrated 1212

implementation. 1213

 Unique Knowledge 5.9.31214

As specified, the initialize operation cannot be used to provide or obtain knowledge about unique 1215

characteristics of a client or service. 1216

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

48

DRAFT

 Return Values Detail 5.9.41217

5.9.4.1 Success 1218

Status Value success
Condition The service successfully initialized the target biometric sensor

Required Elements status

must be populated with the WsbdStatus literal "success"
Optional Elements None

5.9.4.2 Failure 1219

Status Value failure
Condition The service experienced a fault that prevented successful initialization.

Required Elements status (WsbdStatus, §3.8)
the literal “failure”

Optional Elements message (xs:string, [XSDPart2])
an informative description of the nature of the failure

A failure status must only be used to report failures that occurred within the web service, not within the 1220

target biometric sensor (§5.9.4.5, §5.9.4.6) 1221

5.9.4.3 Invalid Id 1222

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status (WsbdStatus, §3.8)
the literal “invalidId”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1223

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1224

inactivity (§5.4.4.1). 1225

See §5.1.2 for general information on how services must handle parameter failures. 1226

5.9.4.4 Canceled 1227

Status Value canceled
Condition The initialization operation was interrupted by a cancellation request.

Required Elements status (WsbdStatus, §3.8)
the literal “canceled”

Optional Elements None

See §5.16.2.2 for information about what may trigger a cancellation. 1228

5.9.4.5 Canceled with Sensor Failure 1229

Status Value canceledWithSensorFailure
Condition The initialization operation was interrupted by a cancellation request and the

target biometric sensor experienced a failure
Required Elements status (WsbdStatus, §3.8)

the literal “canceledWithSensorFailure”
Optional Elements message (xs:string, [XSDPart2])

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

49

DRAFT

an informative description of the nature of the failure

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within the 1230

target biometric sensor. Clients receiving this result may need to reattempt the initialization request to 1231

restore full functionality. See §5.16.2.2 for information about what may trigger a cancellation. 1232

5.9.4.6 Sensor Failure 1233

Status Value sensorFailure
Condition The initialization failed due to a failure within the target biometric sensor

Required Elements status (WsbdStatus, §3.8)
the literal “sensorFailure”

Optional Elements message (xs:string, [XSDPart2])
an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric sensor, 1234

not a failure within the web service (§5.9.4.2). 1235

5.9.4.7 Lock Not Held 1236

Status Value lockNotHeld

Condition Initialization could not be performed because the requesting client does not hold
the lock

Required Elements status (WsbdStatus, §3.8)
the literal “lockNotHeld”

Optional Elements None

Sensor operations require that the requesting client holds the service lock. 1237

5.9.4.8 Lock Held by Another 1238

Status Value lockHeldByAnother
Condition Initialization could not be performed because the lock is held by another client.

Required Elements status (WsbdStatus, §3.8)
the literal “lockHeldByAnother”

Optional Elements None

5.9.4.9 Sensor Busy 1239

Status Value sensorBusy
Condition Initialization could not be performed because the service is already performing a

different sensor operation for the requesting client.
Required Elements status (WsbdStatus, §3.8)

the literal “sensorBusy”
Optional Elements None

5.9.4.10 Sensor Timeout 1240

Status Value sensorTimeout
Condition Initialization could not be performed because the target biometric sensor took too

long to complete the initialization request.
Required Elements status (WsbdStatus, §3.8)

the literal “sensorTimeout”
Optional Elements None

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

50

DRAFT

A service did not receive a timely response from the target biometric sensor. Note that this condition is 1241

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See A.2 1242

for information on how a client might determine timeouts.) 1243

5.9.4.11 Bad Value 1244

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status (WsbdStatus, §3.8)

the literal “badValue”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1245

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

51

DRAFT

5.10 Get Configuration 1246

Description Retrieve metadata about the target biometric sensor’s current configuration
HTTP Method GET

URL Template /configure/{sessionId}

URL Parameters {sessionId} (UUID, §3.2)
Identity of the session requesting the configuration

Payload Not applicable
Idempotent Yes

Sensor Operation Yes

 WsbdResult Summary 5.10.11247

success status="success"

metadata=current configuration of the sensor (WsbdDictionary, §3.3)
failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badFields={"sessionId"} (WsbdStringArray, §3.6)
canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="canceled"

initializationNeeded status="initializationNeeded"

configurationNeeded status="configurationNeeded"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

badValue status="badValue"

badFields={"sessionId"} (WsbdStringArray, §3.6)

 Usage Notes 5.10.21248

The get configuration operation retrieves the service’s current configuration. 1249

 Unique Knowledge 5.10.31250

As specified, the get configuration can be used to obtain knowledge about unique characteristics of a service. 1251

Through get configuration, a service may expose implementation and/or service-specific configuration 1252

parameter names and values that are not described in a conformance profile [SP500-288A]. 1253

 Return Values Detail 5.10.41254

The get configuration operation must return a WsbdResult according to the following constraints. 1255

5.10.4.1 Success 1256

Status Value success
Condition The service provides the current configuration

Required Elements status (WsbdStatus, §3.8)
the literal “success”

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

52

DRAFT

metadata (WsbdDictionary, §3.3)
the target biometric sensor’s current configuration

Optional Elements None
See §4.2 for information regarding configurations. 1257

5.10.4.2 Failure 1258

Status Value failure
Condition The service cannot provide the current configuration due to service (not target

biometric sensor) error.
Required Elements status (WsbdStatus, §3.8)

the literal “failure”
Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must only use this status to report failures that occur within the web service, not the target biometric 1259

sensor (see §5.10.4.5, §5.10.4.6). 1260

5.10.4.3 Invalid Id 1261

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status (WsbdStatus, §3.8)
the literal “invalidId”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1262

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1263

inactivity (§5.4.4.1). 1264

See §5.1.2 for general information on how services must handle parameter failures. 1265

5.10.4.4 Canceled 1266

Status Value canceled
Condition The get configuration operation was interrupted by a cancellation request.

Required Elements status (WsbdStatus, §3.8)
the literal “canceled”

Optional Elements None

See §5.16.2.2 for information about what may trigger a cancellation. 1267

5.10.4.5 Canceled with Sensor Failure 1268

Status Value canceledWithSensorFailure
Condition The get configuration operation was interrupted by a cancellation request during

which the target biometric sensor experienced a failure
Required Elements status (WsbdStatus, §3.8)

the literal “canceledWithSensorFailure”
Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

53

DRAFT

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within the 1269

target biometric sensor. Clients receiving this result may need to perform initialization to restore full 1270

functionality. See §5.16.2.2 for information about what may trigger a cancellation. 1271

5.10.4.6 Sensor Failure 1272

Status Value sensorFailure
Condition The configuration could not be queried due to a failure within the target biometric

sensor.
Required Elements status (WsbdStatus, §3.8)

the literal “sensorFailure”
Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric sensor, 1273

not a failure within the web service (§5.9.4.2). 1274

5.10.4.7 Lock Not Held 1275

Status Value lockNotHeld
Condition The configuration could not be queried because the requesting client does not

hold the lock.
Required Elements status (WsbdStatus, §3.8)

the literal “lockNotHeld”
Optional Elements None

Sensor operations require that the requesting client holds the service lock. 1276

5.10.4.8 Lock Held by Another 1277

Status Value lockHeldByAnother
Condition The configuration could not be queried because the lock is held by another client.

Required Elements status (WsbdStatus, §3.8)
the literal “lockHeldByAnother”

Optional Elements None

5.10.4.9 Initialization Needed 1278

Status Value initializationNeeded

Condition The configuration could not be queried because the target biometric sensor has
not been initialized.

Required Elements status (WsbdStatus, §3.8)
the literal “initializationNeeded”

Optional Elements None

Services should be able to provide the sensors configuration without initialization; however, this is not strictly 1279

necessary. Regardless, robust clients should assume that configuration will require initialization. 1280

5.10.4.10 Configuration Needed 1281

Status Value configurationNeeded

Condition The configuration could not be queried because the target biometric sensor has
not been initialized.

Required Elements status (WsbdStatus, §3.8)
the literal “configurationNeeded”

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

54

DRAFT

Optional Elements None

Services may require configuration to be set before a configuration can be retrieved if a service does not 1282

provide a valid default configuration. 1283

5.10.4.11 Sensor Busy 1284

Status Value sensorBusy
Condition The configuration could not be queried because the service is already performing

a different sensor operation for the requesting client.
Required Elements status (WsbdStatus, §3.8)

the literal “sensorBusy”
Optional Elements None

5.10.4.12 Sensor Timeout 1285

Status Value sensorTimeout
Condition The configuration could not be queried because the target biometric sensor took

too long to complete the request.
Required Elements status (WsbdStatus, §3.8)

the literal “sensorTimeout”
Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is 1286

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See A.2 1287

for information on how a client might determine timeouts.) 1288

5.10.4.13 Bad Value 1289

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status (WsbdStatus, §3.8)

the literal “badValue”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1290

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

55

DRAFT

5.11 Set Configuration 1291

Description Set the target biometric sensor’s configuration
HTTP Method POST

URL Template /configure/{sessionId}

URL Parameters {sessionId} (UUID, §3.2)
Identity of the session requesting the configuration

Payload Desired sensor configuration (WsbdDictionary, §3.3)
Idempotent Yes

Sensor Operation Yes

 WsbdResult Summary 5.11.11292

success status="success"
failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badFields={"sessionId"} (WsbdStringArray, §3.6)
canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="canceled"

initializationNeeded status="initializationNeeded"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

unsupported status="unsupported"

badFields={field names} (WsbdStringArray, §3.6)
badValue status="badValue"

badFields={"sessionId"} (WsbdStringArray, §3.6)
 (or)
status="badValue"

badFields={field names} (WsbdStringArray, §3.6)
noSuchParameter status="unsupported"

badFields={field names} (WsbdStringArray, §3.6)

 Usage Notes 5.11.21293

The set configuration operation sets the configuration of a service’s target biometric sensor. 1294

5.11.2.1 Input Payload Information 1295

The set configuration operation is the only operation that takes input within the body of the HTTP request. The 1296

desired configuration must be sent as a single, unnamed WsbdDictionary. See §4.2 for information regarding 1297

configurations. 1298

EXAMPLE: The following represents a ‘raw’ request to configure a service at http://10.0.0.2:7000/Sensor 1299

such that string1=value and integer1=1. (In this example, each value element contains fully qualified 1300

namespace information, although this is not necessary.) 1301

POST http://10.0.0.2:7000/Sensor/configure/1678e0fa-b578-4234-bb59-6f2f92d7b80c HTTP/1.1 1302

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

56

DRAFT

Content-Type: application/xml 1303
Host: 10.0.0.2:7000 1304
Content-Length: 351 1305
Expect: 100-continue 1306
 1307
<WsbdDictionary xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 1308
xmlns="http://nist.gov/itl/bws/ws-bd/L1/r0/"><item><key>string1</key><value 1309
xmlns:d3p1="http://www.w3.org/2001/XMLSchema" xsi:type="d3p 1310
1:string">value</value></item><item><key>integer1</key><value xmlns:d3p1="http://www.w3.org/2001 1311
/XMLSchema" xsi:type="d3p1:int">1</value></item></WsbdDictionary> 1312

More information regarding the use of the xmlns attribute can be found in [XMLNS]. 1313

 Unique Knowledge 5.11.31314

The set configuration can be used to provide knowledge about unique characteristics to a service. Through set 1315

configuration, a client may provide implementation and/or service-specific parameter names and values that 1316

are not described in a conformance profile [SP500-288A]. 1317

 Return Values Detail 5.11.41318

The set configuration operation must return a WsbdResult according to the following constraints. 1319

5.11.4.1 Success 1320

Status Value success
Condition The service was able to successfully set the full configuration

Required Elements status (WsbdStatus, §3.8)
the literal “success”

Optional Elements None

5.11.4.2 Failure 1321

Status Value failure
Condition The service cannot set the desired configuration due to service (not target

biometric sensor) error.
Required Elements status (WsbdStatus, §3.8)

the literal “failure”
Optional Elements message

an informative description of the nature of the failure

Services must only use this status to report failures that occur within the web service, not the target biometric 1322

sensor (see §5.11.4.5, §5.11.4.6). 1323

5.11.4.3 Invalid Id 1324

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status (WsbdStatus, §3.8)
the literal “invalidId”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

57

DRAFT

A session id is invalid if it does not correspond to an active registration. A session id may become 1325

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1326

inactivity (§5.4.4.1). 1327

5.11.4.4 Canceled 1328

Status Value canceled
Condition The set configuration operation was interrupted by a cancellation request.

Required Elements status (WsbdStatus, §3.8)
the literal “canceled”

Optional Elements None

See §5.16.2.2 for information about what may trigger a cancellation. 1329

5.11.4.5 Canceled with Sensor Failure 1330

Status Value canceledWithSensorFailure
Condition The set configuration operation was interrupted by a cancellation request during

which the target biometric sensor experienced a failure
Required Elements status (WsbdStatus, §3.8)

the literal “canceledWithSensorFailure”
Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within the 1331

target biometric sensor. Clients receiving this result may need to perform initialization to restore full 1332

functionality. See §5.16.2.2 for information about what may trigger a cancellation. 1333

5.11.4.6 Sensor Failure 1334

Status Value sensorFailure
Condition The configuration could not be set due to a failure within the target biometric

sensor.
Required Elements status (WsbdStatus, §3.8)

the literal “sensorFailure”
Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric sensor, 1335

not a failure within the web service (§5.11.4.2). Errors with the configuration itself should be reported via an 1336

unsupported (§5.11.4.12), badValue (§5.11.4.13), or badValue status (§5.11.4.14). 1337

5.11.4.7 Lock Not Held 1338

Status Value lockNotHeld
Condition The configuration could not be queried because the requesting client does not

hold the lock.
Required Elements status (WsbdStatus, §3.8)

the literal “lockNotHeld”
Optional Elements None

Sensor operations require that the requesting client holds the service lock. 1339

5.11.4.8 Lock Held by Another 1340

Status Value lockHeldByAnother
Condition The configuration could not be set because the lock is held by another client.

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

58

DRAFT

Required Elements status (WsbdStatus, §3.8)
the literal “lockHeldByAnother”

Optional Elements None

5.11.4.9 Initialization Needed 1341

Status Value initializationNeeded

Condition The configuration could not be set because the target biometric sensor has not
been initialized.

Required Elements status (WsbdStatus, §3.8)
the literal “initializationNeeded”

Optional Elements None

Services should be able to set the configuration without initialization; however, this is not strictly necessary. 1342

Similarly, clients should assume that setting configuration will require initialization. 1343

5.11.4.10 Sensor Busy 1344

Status Value sensorBusy
Condition The configuration could not be set because the service is already performing a

different sensor operation for the requesting client.
Required Elements status (WsbdStatus, §3.8)

the literal “sensorBusy”
Optional Elements None

5.11.4.11 Sensor Timeout 1345

Status Value sensorTimeout
Condition The configuration could not be set because the target biometric sensor took too

long to complete the request.
Required Elements status (WsbdStatus, §3.8)

the literal “sensorTimeout”
Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is 1346

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See A.2 for 1347

information on how a client might determine timeouts.) 1348

5.11.4.12 Unsupported 1349

Status Value unsupported
Condition The requested configuration contains one or more values that are syntactically

and semantically valid, but not supported by the service.
Required Elements status (WsbdStatus, §3.8)

the literal “unsupported”

badFields (WsbdStringArray, §3.6)
an array that contains the field name(s) that corresponding to the
unsupported value(s)

Optional Elements None

Returning multiple fields allows a service to indicate that a particular combination of parameters is not 1350

supported by a service. See §5.1.2 for additional information on how services must handle parameter 1351

failures. 1352

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

59

DRAFT

EXAMPLE: A WS-BD service utilizes a very basic off-the-shelf web camera with limited capabilities. This 1353

camera has three parameters that are all dependent on each other: ImageHeight, ImageWidth, and 1354

FrameRate. The respective allowed values for each parameter might look like: {240, 480, 600, 768}, {320, 640, 1355

800, 1024}, and {5, 10, 15, 20, 30}. Configuring the sensor will return unsupported when the client tries to set 1356

ImageHeigth=768, ImageWidth=1024, and FrameRate=30; this camera might not support capturing images of 1357

a higher resolution at a fast frame rate. Another example is configuring the sensor to use ImageHeight=240 1358

and ImageWidth=1024; as this is a very basic web camera, it might not support capture images of this 1359

resolution. In both cases, the values provided for each parameter are individually valid but the overall validity 1360

is dependent on a combination of parameters 1361

5.11.4.13 Bad Value 1362

Status Value badValue
Condition Either:

(a) The provided session id is not a well-formed UUID, or,
(b) The requested configuration contains a parameter value that is either

syntactically (e.g., an inappropriate data type) or semantically invalid
(e.g., a value outside of an acceptable range).

Required Elements status (WsbdStatus, §3.8)
the literal “badValue”

badFields (WsbdStringArray, §3.6)
an array that contains either
(a) the single field name, “sessionId”, or
(b) the field name(s) that contain invalid value(s)

Optional Elements None

Notice that for the set configuration operation, an invalid URL parameter or one or more invalid input payload 1363

parameters can trigger a badValue status. 1364

See §5.1.2 for general information on how services must handle parameter failures. 1365

5.11.4.14 No Such Parameter 1366

Status Value noSuchParameter
Condition The requested configuration contains a parameter name that is not recognized by

the service.
Required Elements status (WsbdStatus, §3.8)

the literal “noSuchParameter”

badFields (WsbdStringArray, §3.6)
an array that contains the field name(s) that are not recognized by the
service

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1367

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

60

DRAFT

5.12 Capture 1368

Description Capture biometric data
HTTP Method POST

URL Template /capture/{sessionId}

URL Parameters {sessionId} (UUID, §3.2)
Identity of the session requesting the configuration

Input Payload None
Idempotent No

Sensor Operation Yes

 WsbdResult Summary 5.12.11369

success status="success"

captureIds={identifiers of captured data} (WsbdUuidArray, §3.7)
failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badFields={"sessionId"} (WsbdStringArray, §3.6)
canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

initializationNeeded status="initializationNeeded"

configurationNeeded status="configurationNeeded"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

badValue status="badValue"

badFields={"sessionId"} (WsbdStringArray, §3.6)

 Usage Notes 5.12.21370

The capture operation triggers biometric acquisition. On success, the operation returns one or more 1371

identifiers, or capture ids. Naturally, the capture operation is not idempotent. Each capture operation returns 1372

unique identifiers—each execution returning references that are particular to that capture. Clients then can 1373

retrieve the captured data itself by passing a capture id as a URL parameter to the download operation. 1374

Multiple capture ids are supported to accommodate sensors that return collections of biometric data. For 1375

example, a multi-sensor array might save an image per sensor. A mixed-modality sensor might assign a 1376

different capture id for each modality. 1377

IMPORTANT NOTE: The capture operation may include some post-acquisition processing. Although post-1378

acquisition processing is directly tied to the capture operation, its effects are primarily on data transfer, and is 1379

therefore discussed in detail within the download operation documentation (§5.13.2.2) 1380

5.12.2.1 Providing Timing Information 1381

Depending on the sensor, a capture operation may take anywhere from milliseconds to tens of seconds to 1382

execute. (It is possible to have even longer running capture operations than this, but special accommodations 1383

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

61

DRAFT

may need to be made on the server and client side to compensate for typical HTTP timeouts.) By design, there 1384

is no explicit mechanism for a client to determine how long a capture operation will take. However, services 1385

can provide “hints” to through capture timeout information (A.2.4), and clients can automatically adjust their 1386

own timeouts and behavior accordingly. 1387

 Unique Knowledge 5.12.31388

As specified, the capture operation cannot be used to provide or obtain knowledge about unique 1389

characteristics of a client or service. 1390

 Return Values Detail 5.12.41391

The capture operation must return a WsbdResult according to the following constraints. 1392

5.12.4.1 Success 1393

Status Value success
Condition The service successfully performed a biometric acquisition

Required Elements status (WsbdStatus, §3.8)
the literal “success”

captureIds (WsbdUuidArray, §3.7)
one more UUIDs that uniquely identify the data acquired by the operation

Optional Elements None

See the usage notes for capture (§5.12.2) and download (§5.13.2) for full detail. 1394

5.12.4.2 Failure 1395

Status Value failure
Condition The service cannot perform the capture due to a service (not target biometric

sensor) error.
Required Elements status

must be populated with the WsbdStatus literal "failure"
Optional Elements message

an informative description of the nature of the failure

Services must only use this status to report failures that occur within the web service, not the target biometric 1396

sensor (see §5.12.4.5, §5.12.4.6). A service may fail at capture if there is not enough internal storage 1397

available to accommodate the captured data (§A.3). 1398

5.12.4.3 Invalid Id 1399

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status (WsbdStatus, §3.8)
the literal “invalidId”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1400

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1401

inactivity (§5.4.4.1). 1402

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

62

DRAFT

See §5.1.2 for general information on how services must handle parameter failures. 1403

5.12.4.4 Canceled 1404

Status Value canceled
Condition The capture operation was interrupted by a cancellation request.

Required Elements status (WsbdStatus, §3.8)
the literal “canceled”

Optional Elements None

See §5.16.2.2 for information about what may trigger a cancellation. 1405

5.12.4.5 Canceled with Sensor Failure 1406

Status Value canceledWithSensorFailure
Condition The capture operation was interrupted by a cancellation request during which the

target biometric sensor experienced a failure
Required Elements status (WsbdStatus, §3.8)

the literal “canceledWithSensorFailure”
Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within the 1407

target biometric sensor. Clients receiving this result may need to perform initialization to restore full 1408

functionality. See §5.16.2.2 for information about what may trigger a cancellation. 1409

5.12.4.6 Sensor Failure 1410

Status Value sensorFailure
Condition The service could perform the capture due to a failure within the target biometric

sensor.
Required Elements status (WsbdStatus, §3.8)

the literal “sensorFailure”
Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric sensor, 1411

not a failure within the web service (§5.12.4.2). 1412

5.12.4.7 Lock Not Held 1413

Status Value lockNotHeld
Condition The service could not perform a capture because the requesting client does not

hold the lock.
Required Elements status (WsbdStatus, §3.8)

the literal “lockNotHeld”
Optional Elements None

Sensor operations require that the requesting client holds the service lock. 1414

5.12.4.8 Lock Held by Another 1415

Status Value lockHeldByAnother
Condition The service could not perform a capture because the lock is held by another

client.
Required Elements status (WsbdStatus, §3.8)

the literal “lockHeldByAnother”

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

63

DRAFT

Optional Elements None

5.12.4.9 Initialization Needed 1416

Status Value initializationNeeded

Condition The service could not perform a capture because the target biometric sensor has
not been initialized.

Required Elements status (WsbdStatus, §3.8)
the literal “initializationNeeded”

Optional Elements None

Services should be able perform capture without explicit initialization. However, the specification recognizes 1417

that this is not always possible, particularly for physically separated implementations. Regardless, for 1418

robustness, clients should assume that setting configuration will require initialization. 1419

5.12.4.10 Configuration Needed 1420

Status Value configurationNeeded

Condition The capture could not be set because the target biometric sensor has not been
configured.

Required Elements status (WsbdStatus, §3.8)
the literal “configurationNeeded”

Optional Elements None

A service should offer a default configuration to allow capture to be performed without an explicit 1421

configuration. Regardless, for robustness, clients should assume that capture requires configuration. 1422

5.12.4.11 Sensor Busy 1423

Status Value sensorBusy
Condition The service could not perform a capture because the service is already performing

a different sensor operation for the requesting client.
Required Elements status (WsbdStatus, §3.8)

the literal “sensorBusy”
Optional Elements None

5.12.4.12 Sensor Timeout 1424

Status Value sensorTimeout
Condition The service could not perform a capture because the target biometric sensor took

too long to complete the request.
Required Elements status (WsbdStatus, §3.8)

the literal “sensorTimeout”
Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is 1425

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See §A.2 1426

for information on how a client might determine timeouts.) 1427

5.12.4.13 Bad Value 1428

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status (WsbdStatus, §3.8)

the literal “badValue”

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

64

DRAFT

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1429

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

65

DRAFT

5.13 Download 1430

Description Download the captured biometric data
HTTP Method GET
URL Template /download/{captureId}

URL Parameters {captureId} (UUID, §3.2)
Identity of the captured data to download

Input Payload None
Idempotent Yes

Sensor Operation No

 WsbdResult Summary 5.13.11431

success status="success"

metadata=sensor configuration at the time of capture (WsbdDictionary, §3.3)
sensorData=biometric data (xs:base64Binary)

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badFields={"captureId"} (WsbdStringArray, §3.6)
badValue status="badValue"

badFields={"captureId"} (WsbdStringArray, §3.6)
preparingDownload status="preparingDownload"

 Usage Notes 5.13.21432

The download operation allows a client to retrieve biometric data acquired during a particular capture. 1433

5.13.2.1 Capture and Download as Separate Operations 1434

WS-BD decouples the acquisition operation (capture) from the data transfer (download) operation. This has 1435

two key benefits. First, it is a better fit for services that have post-acquisition processes. Second, it allows 1436

multiple clients to download the captured biometric data by exploiting the concurrent nature of HTTP. By 1437

making download a simple data transfer operation, service can handle multiple, concurrent downloads 1438

without requiring locking (§2.5.5). 1439

5.13.2.2 Services with Post-Acquisition Processing 1440

A service does not need to make the captured data available immediately after capture; a service may have 1441

distinct acquisition and post-acquisition processes. The following are two examples of such services: 1442

EXAMPLE: A service exposing a fingerprint scanner also performs post processing on a fingerprint 1443

image—segmentation, quality assessment, and templatization. 1444

 1445

EXAMPLE: A service exposes a digital camera in which the captured image is not immediately 1446

available after a photo is taken; the image may need to be downloaded from to the camera’s internal 1447

storage or from the camera to the host computer (in a physically separated implementation). If the 1448

digital camera was unavailable for an operation due to a data transfer, a client requesting a sensor 1449

operation would receive a sensorBusy status. 1450

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

66

DRAFT

The first method is to perform the post-processing within the capture operation itself. I.e., capture not only 1451

blocks for the acquisition to be performed, but also blocks for the post-processing—returning when the post-1452

processing is complete. This type of capture is the easier of the two to both (a) implement on the client, and 1453

(b) use by a client. 1454

EXAMPLE: Figure 8 illustrates an example of a capture operation that includes post-processing. Once 1455

the post-processing is complete, capture ids are returned to the client. 1456

 1457

Figure 8. Including post-processing in the capture operation means downloads are immediately available when capture 1458

completes. 1459

In the second method, post-processing may be performed by the web service after the capture operation 1460

returns. Capture ids are still returned to the client, but are in an intermediate state. This exposes a window of 1461

time in which the capture is complete, but the biometric data is not yet ready for retrieval or download. Data-1462

related operations (download, get download info, and thrifty download) performed within this window return 1463

a preparingDownload status to clients to indicate that the captured data is currently in an intermediate 1464

state—captured, but not yet ready for retrieval. 1465

EXAMPLE: Figure 9 illustrates an example of a capture operation with separate post-processing. 1466

Returning to the example of the fingerprint scanner that transforms a raw biometric sample into a 1467

template after acquisition, assume that the service performs templitiazation after capture returns. 1468

During post-processing, requests for the captured data return preparingDownload, but the sensor 1469

itself is available for additional operations. 1470

Client Server

1:capture

sessionId={A1234567...}

The client sends a capture request to the service.

Acquisition Within the capture operation, the service performs both the acquisition
and any post-processing.

Post-processing

2:capture

captureId = {C1D10123...}

After post-processing, the service provides a capture id to the
requesting client.

3:download

captureId = {C1D10123...}

4:download

(biometric data)

The requesting client uses the capture ids to download the biometric
data.

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

67

DRAFT

 1471

Figure 9. Example of capture with separate post-acquisition processing that does involve the target biometric sensor. 1472

Because the post-acquisition processing does not involve the target biometric sensor, it is available for sensor operations. 1473

Services with an independent post-processing step should perform the post-processing on an independent 1474

unit of execution (e.g., a separate thread, or process). However, post-processing may include a sensor 1475

operation, which would interfere with incoming sensor requests. 1476

EXAMPLE: Figure 10 illustrates another variation on a capture operation with separate post-1477

processing. Return to the digital camera example, but assume that it is a physically separate 1478

implementation and capture operation returns immediately after acquisition. The service also has a 1479

post-acquisition process that downloads the image data from the camera to a computer. Like the 1480

previous example, during post-processing, requests for the captured data return preparingDownload. 1481

However, the sensor is not available for additional operations because the post-processing step 1482

requires complete control over the camera to transfer the images to the host machine: preparing 1483

them for download. 1484

Client Server

1:capture

sessionId={A1234567...}

The client sends a capture request to the service.

Acquisition Within the capture operation, the service performs both the acquisition
and any post-processing.

2:capture

captureId={12345...}

After acquisition, the service provides a capture id to the requesting
client.

begin
Post-processing capture {12345...}

In the background, the service starts post-processing.

3:download

captureId={12345...}

Once a capture id is available, the client can make a request to
download.

4:download

preparingDownload

However, since the post-processing is not yet complete, the service
returns "preparingDownload" since the requested capture result is not
yet ready.

5:capture

sessionId={A1234567...}

The service does not use the sensor during the post-processing step.
The client can successfully perform another capture.

Acquisition

6:capture

captureId={ABCDE...}

end
Post-processing capture {12345...}

7:download

captureId = {C1D10123...}

8:download

(biometric data)

Now that the post-processing for CAPTURE_ID is finished, the client
can download the biometric data.

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

68

DRAFT

 1485

Figure 10. Example of capture with separate post-acquisition processing that does involve the target biometric sensor. 1486

Because the post-acquisition processing does not involve the target biometric sensor, it is available for sensor operations. 1487

Unless there is an advantage to doing so, when post-acquisition processing includes a sensor operation, 1488

implementers should avoid having a capture operation that returns directly after acquisition. In this case, 1489

even when the capture operation finishes, clients cannot perform a sensor operation until the post-acquisition 1490

processing is complete. 1491

In general, implementers should try to combine both the acquisition and post-acquisition processing into one 1492

capture operation—particularly if the delay due to post-acquisition processing is either operationally 1493

acceptable or a relatively insignificant contributor to the combined time. 1494

A download operation must return failure if the post-acquisition processing cannot be completed 1495

successfully. Such failures cannot be reflected in the originating capture operation —that operation has 1496

already returned successfully with capture ids. Services must eventually resolve all preparingDownload 1497

statuses to success or failure. Through get service info, a service can provide information to a client on how 1498

long to wait after capture until a preparingDownload is fully resolved. 1499

5.13.2.3 Client Notification 1500

A client that receives a preparingDownload must poll the service until the requested data becomes available. 1501

However, through get service info, a service can provide “hints” to a client on how long to wait after capture 1502

until data can be downloaded (§A.2.5) 1503

Client Server

1:capture

sessionId={A1234567...}

The client sends a capture request to the service.

Acquisition Within the capture operation, the service performs both the acquisition
and any post-processing.

2:capture

captureId={12345...}

After acquisition, the service provides a capture id to the requesting
client.

begin
Post-processing capture {12345...}

In the background, the service starts post-processing.

3:download

captureId={12345...}

Once a capture id is available, the client can make a request to
download.

4:download

preparingDownload

However, since the post-processing is not yet complete, the service
returns "preparingDownload" since the requested capture result is not
yet ready.

5:capture

sessionId={A1234567...}

The service uses the sensor during the post-processing step. No client
can successfully perform another sensor operation.

Acquisition

6:capture

BUSY

end
Post-processing capture {12345...}

7:download

captureId = {C1D10123...}

8:download

(biometric data)

Now that the post-processing for CAPTURE_ID is finished, the client
can download the biometric data.

9:capture

sessionId={A1234567...}

Futhermore, clients can again perform successful capture.

Acquisition

10:capture

captureId={ABCDE...})

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

69

DRAFT

 Unique Knowledge 5.13.31504

The download operation can be used to provide metadata, which may be unique to the service, through the 1505

metadata element. See §4 for information regarding metadata. 1506

 Return Values Detail 5.13.41507

The download operation must return a WsbdResult according to the following constraints. 1508

5.13.4.1 Success 1509

Status Value success
Condition The service can provide the requested data

Required Elements status (WsbdStatus, §3.8)
the literal “success”

metadata (WsbdDictionary, §3.3)
sensor metadata as it was at the time of capture

sensorData (xs:base64Binary, [XSDPart2])
the biometric data corresponding to the requested capture id, base-64
encoded

Optional Elements None

A successful download must populate the WsbdResult with all of the following information: 1510

1. The status element must be populated with the WsbdStatus literal “success”. 1511

2. The metadata element must be populated with metadata of the biometric data and the configuration 1512

held by the target biometric sensor at the time of capture. 1513

3. The sensorData element must contain the biometric data, base-64 encoded (xs:base64Binary), 1514

corresponding to the requested capture id. 1515

See the usage notes for both capture (§5.12.2) and download (§5.13.2) for more detail regarding the 1516

conditions under which a service is permitted to accept or deny download requests. 1517

5.13.4.2 Failure 1518

Status Value failure
Condition The service cannot provide the requested data.

Required Elements status (WsbdStatus, §3.8)
the literal “failure”

Optional Elements message (xs:string, [XSDPart2])
an informative description of the nature of the failure

A service might not be able to provide the requested data due to failure in post-acquisition processing, a 1519

corrupted data store or other service or storage related failure. 1520

5.13.4.3 Invalid Id 1521

Status Value invalidId
Condition The provided capture id is not recognized by the service.

Required Elements status (WsbdStatus, §3.8)
the literal “invalidId”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “captureId”

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

70

DRAFT

Optional Elements None

A capture id is invalid if it was not returned by a capture operation. A capture id may become unrecognized by 1522

the service automatically if the service automatically clears storage space to accommodate new captures 1523

(§A.3). 1524

See §5.1.2 for general information on how services must handle parameter failures. 1525

5.13.4.4 Bad Value 1526

Status Value badValue

Condition The provided capture id is not a well-formed UUID.
Required Elements status (WsbdStatus, §3.8)

the literal “badValue”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “captureId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1527

5.13.4.5 Preparing Download 1528

Status Value preparingDownload

Condition The requested data cannot be provided because the service is currently
performing a post-acquisition process—i.e., preparing it for download

Required Elements status (WsbdStatus, §3.8)
the literal “preparingDownload”

Optional Elements None

See the usage notes for both capture (§5.12.2) and download (§5.13.2) for full detail. 1529

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

71

DRAFT

5.14 Get Download Info 1530

Description Get only the metadata associated with a particular capture
HTTP Method GET
URL Template /download/{captureId}/info

URL Parameters {captureId} (UUID, §3.2)
Identity of the captured data to query

Input Payload Not applicable
Idempotent Yes

Sensor Operation No

 WsbdResult Summary 5.14.11531

success status="success"

metadata=sensor configuration at the time of capture
failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badFields={"captureId"} (WsbdStringArray, §3.6)
badValue status="badValue"

badFields={"captureId"} (WsbdStringArray, §3.6)
preparingDownload status="preparingDownload"

 Usage Notes 5.14.21532

Given the potential large size of some biometric data the get download info operation provides clients with a 1533

way to get information about the biometric data without needing to transfer the biometric data itself. It is 1534

logically equivalent to the download operation, but without any sensor data. Therefore, unless detailed 1535

otherwise, the usage notes for download (§5.14.2) also apply to get download info. 1536

 Unique Knowledge 5.14.31537

The get download info operation can be used to provide metadata, which may be unique to the service, 1538

through the metadata element. See §4 for information regarding metadata. 1539

 Return Values Detail 5.14.41540

The get download info operation must return a WsbdResult according to the following constraints. 1541

5.14.4.1 Success 1542

Status Value success
Condition The service can provide the requested data

Required Elements status (WsbdStatus, §3.8)
the literal “success”

metadata (WsbdDictionary, §3.3)
the sensor’s configuration as it was set at the time of capture

Optional Elements None

A successful get download info operation returns all of the same information as a successful download 1543

operation (§5.13.4.1), but without the sensor data. 1544

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

72

DRAFT

5.14.4.2 Failure 1545

Status Value failure
Condition The service cannot provide the requested data.

Required Elements status (WsbdStatus, §3.8)
the literal “failure”

Optional Elements message (xs:string, [XSDPart2])
an informative description of the nature of the failure

A service might not be able to provide the requested data due to failure in post-acquisition processing, a 1546

corrupted data store or other service or storage related failure. 1547

5.14.4.3 Invalid Id 1548

Status Value invalidId
Condition The provided capture id is not recognized by the service.

Required Elements status (WsbdStatus, §3.8)
the literal “invalidId”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “captureId”

Optional Elements None

A capture id is invalid if it was not returned by a capture operation. A capture id may become unrecognized by 1549

the service automatically if the service automatically clears storage space to accommodate new captures 1550

(§A.3). 1551

See §5.1.2 for general information on how services must handle parameter failures. 1552

5.14.4.4 Bad Value 1553

Status Value badValue

Condition The provided capture id is not a well-formed UUID.
Required Elements status (WsbdStatus, §3.8)

the literal “badValue”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “captureId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1554

5.14.4.5 Preparing Download 1555

Status Value preparingDownload

Condition The requested data cannot be provided because the service is currently
performing a post-acquisition process—i.e., preparing it for download

Required Elements status (WsbdStatus, §3.8)
the literal “preparingDownload”

Optional Elements None

See the usage notes for both capture (§5.12.2) and download (§5.13.2) for full detail. 1556

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

73

DRAFT

5.15 Thrifty Download 1557

Description Download a compact representation of the captured biometric data suitable for
preview

HTTP Method GET
URL Template /download/{captureId}/{maxSize}

URL Parameters {captureId} (UUID, §3.2)
Identity of the captured data to download
{maxSize} (xs:integer)
Content-type dependent indicator of maximum permitted download size

Input Payload None
Idempotent Yes

Sensor Operation No

 WsbdResult Summary 5.15.11558

success status="success"

metadata=minimal metadata describing the captured data (WsbdDictionary, §3.3)
sensorData=biometric data (xs:base64Binary)

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badValue status="badValue"

badFields=either "captureId", "maxSize", or both (WsbdStringArray, §3.6)
unsupported status="unsupported"

preparingDownload status="preparingDownload"

 Usage Notes 5.15.21559

The thrifty download operation allows a client to retrieve a compact representation of the biometric data 1560

acquired during a particular capture. It is logically equivalent to the download operation, but provides a 1561

compact version of the sensor data. Therefore, unless detailed otherwise, the usage notes for download 1562

(§5.14.2) also apply to get download info. 1563

The suitability of the thrifty download data as a biometric is implementation dependent. For some 1564

applications, the compact representation may be suitable for use within a biometric algorithm; for others, it 1565

may only serve the purpose of preview. 1566

The content type of thrifty download operation may be different than that for download. (Notice that the 1567

specification does not have a separate operation for querying the content type of thrifty download operation 1568

sensor data). A service also may offer different major media types for its download and thrifty download 1569

operation. 1570

EXAMPLE: A service exposing a fingerprint scanner may provide template data in a download 1571

operation, but still offer a visual thumbnail of the captured biometric with thrifty download. 1572

For images, the maxSize parameter describes the maximum image width or height (in pixels) that the service 1573

may return; neither dimension may exceed maxSize. It is expected that servers will dynamically scale the 1574

captured data to fulfill a client request. This is not strictly necessary, however, as long as the maximum size 1575

requirements are met. 1576

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

74

DRAFT

For non-images, the default behavior is to return unsupported. It is possible to use URL parameter maxSize as 1577

general purpose parameter with implementation-dependent semantics. (See the next section for details.) 1578

 Unique Knowledge 5.15.31579

The thrifty download operation can be used to provide knowledge about unique characteristics to a service. 1580

Through thrifty download, a service may (a) redefine the semantics of maxSize or (b) provide a data of a 1581

format that does not adhere to any conformance profile [SP500-288A]. 1582

 Return Values Detail 5.15.41583

The thrifty download operation must return a WsbdResult according to the following constraints. 1584

5.15.4.1 Success 1585

Status Value success
Condition The service can provide the requested data

Required Elements status (WsbdStatus, §3.8)
the literal “success”

metadata (xs:string, [XSDPart2])
a RFC2045/RFC2046 compliant xs:string [XSDPart2] describing the
captured data

sensorData (xs:base64Binary, [XSDPart2])
the biometric data corresponding to the requested capture id, base-64
encoded, scaled appropriately to the maxSize parameter.

Optional Elements None

For increased efficiency, a successful the thrifty download operation only returns the sensor data, and its 1586

associated content type. 1587

5.15.4.2 Failure 1588

Status Value failure
Condition The service cannot provide the requested data.

Required Elements status (WsbdStatus, §3.8)
the literal “failure”

Optional Elements message

an informative description of the nature of the failure

A service might not be able to provide the requested data due to a corrupted data store or other service or 1589

storage related failure. 1590

5.15.4.3 Invalid Id 1591

Status Value invalidId
Condition The provided capture id is not recognized by the service.

Required Elements status (WsbdStatus, §3.8)
the literal “invalidId”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “captureId”

Optional Elements None

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

75

DRAFT

A capture id is invalid if it does not correspond to a capture operation. A capture id may become unrecognized 1592

by the service automatically if the service automatically clears storage space to accommodate new captures 1593

(§A.3). 1594

See §5.1.2 for general information on how services must handle parameter failures. 1595

5.15.4.4 Bad Value 1596

Status Value badValue

Condition The provided capture id is not a well-formed UUID.
Required Elements status (WsbdStatus, §3.8)

the literal “badValue”

badFields (WsbdStringArray, §3.6)
an array that contains one or both of the following fields:
- “captureId” if the provided session id not well-formed
- “maxSize” if the provided maxSize parameter is not well-formed

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1597

5.15.4.5 Unsupported 1598

Status Value unsupported
Condition The service does not support thrifty download,

Required Elements status

must be populated with the WsbdStatus literal "badValue"

badFields

must be populated with a WsbdStringArray (§3.6) that contains the single field
name, “maxSize”—i.e. “<element>maxSize</element>”.

Optional Elements None

Services that capture biometrics that are not image-based should return unsupported. 1599

5.15.4.6 Preparing Download 1600

Status Value preparingDownload

Condition The requested data cannot be provided because the service is currently
performing a post-acquisition process—i.e., preparing it for download

Required Elements None
Optional Elements None

Like download, the availability of thrifty download data may also be affected by the sequencing of post-1601

acquisition processing. See §5.13.2.2 for detail. 1602

 1603

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

76

DRAFT

5.16 Cancel 1604

Description Cancel the current sensor operation
HTTP Method POST
URL Template /cancel/{sessionId}

URL Parameters {sessionId} (UUID, §3.2)
Identity of the session requesting cancellation

Input Payload None
Idempotent Yes

Sensor Operation Yes

 WsbdResult Summary 5.16.11605

success status="success"

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

badValue status="badValue", badFields={"sessionId"}

 Usage Notes 5.16.21606

The cancel operation stops any currently running sensor operation; it has no effect on non-sensor operations. 1607

If cancellation of an active sensor operation is successful, cancel operation receives success result, while the 1608

canceled operation receives a canceled (or canceledWithSensorFailure) result. As long as the operation is 1609

canceled, the cancel operation itself receives a success result, regardless if cancellation caused a sensor 1610

failure. In other words, if cancellation caused a fault within the target biometric sensor, as long as the sensor 1611

operation has stopped running, the cancel operation is considered to be successful. 1612

 1613

Figure 11. Example sequence of events for a client initially requesting a capture followed by a cancellation request. 1614

All services must provide cancellation for all sensor operations. 1615

5.16.2.1 Canceling Non-Sensor Operations 1616

Clients are responsible for canceling all non-sensor operations via client-side mechanisms only. Cancellation 1617

of sensor operations requires a separate service operation, since a service may need to “manually” interrupt a 1618

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

77

DRAFT

busy sensor. A service that had its client terminate a non-sensor operation would have no way to easily 1619

determine that a cancellation was requested. 1620

 1621

Figure 12. Cancellations of non-sensor operations do not require a cancel operation to be requested to the service. An 1622

example of this is where a client initiates then cancels a download operation. 1623

5.16.2.2 Cancellation Triggers 1624

Canceling a sensor operation may be triggered by a client or by the service itself. 1625

Typically, the client that originates the sensor operation to be cancelled also initiates the cancellation request. 1626

Because WSBD operations are performed synchronously, cancellations are typically initiated on an separate 1627

unit of execution such as an independent thread or process. 1628

Notice that the only requirement to perform cancellation is that the requesting client hold the service lock. It 1629

is not a requirement that the client that originates the sensor operation to be canceled also initiates the 1630

cancellation request. 1631

Therefore, as discussed in it is possible that a client may cancel the sensor operation initiated by another 1632

client. This occurs if a peer client (a) manages to steal the service lock before the sensor operation is 1633

completed, or (b) is provided with the originating client’s session id. 1634

A service might also self-initiate cancellation. In normal operation, a service that does not receive a timely 1635

response from a target biometric sensor would return sensorTimeout. However, if the service’s internal 1636

timeout mechanism fails, a service may initiate a cancel operation itself. Implementers should use this as a 1637

“last resort” compensating action. 1638

 Unique Knowledge 5.16.31639

As specified, the cancel operation cannot be used to provide or obtain knowledge about unique 1640

characteristics of a client or service. 1641

 Return Values Detail 5.16.41642

The cancel operation must return a WsbdResult according to the following constraints. 1643

5.16.4.1 Success 1644

Status Value success
Condition The service successfully canceled the sensor operation

Required Elements status

must be populated with the WsbdStatus literal "success"

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

78

DRAFT

Optional Elements None

See the usage notes for capture (§5.12.2) and download (§5.13.2) for full detail. 1645

5.16.4.2 Failure 1646

Status Value failure
Condition The service could not cancel the sensor operation

Required Elements status

must be populated with the WsbdStatus literal "failure"
Optional Elements message

an informative description of the nature of the failure

Services should try to return failure in a timely fashion—there is little advantage to a client if it receives the 1647

cancellation failure after the sensor operation to be canceled completes. 1648

5.16.4.3 Invalid Id 1649

Status Value invalidId
Condition The provided session id is not recognized by the service.

Required Elements status (WsbdStatus, §3.8)
the literal “invalidId”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1650

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1651

inactivity (§5.4.4.1). 1652

See §5.1.2 for general information on how services must handle parameter failures. 1653

5.16.4.4 Lock Not Held 1654

Status Value lockNotHeld
Condition The service could cancel the operation because the requesting client does not

hold the lock.
Required Elements status (WsbdStatus, §3.8)

the literal “lockNotHeld”
Optional Elements None

Sensor operations require that the requesting client holds the service lock. 1655

5.16.4.5 Lock Held by Another 1656

Status Value lockHeldByAnother
Condition The service could not cancel the operation because the lock is held by another

client.
Required Elements status (WsbdStatus, §3.8)

the literal “lockHeldByAnother”
Optional Elements None

 1657

5.16.4.6 Bad Value 1658

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

79

DRAFT

Required Elements status (WsbdStatus, §3.8)
the literal “badValue”

badFields (WsbdStringArray, §3.6)
an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures. 1659

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

80

DRAFT

Appendix A Parameter Details 1660

This appendix details the individual parameters available from a get service info operation. For each 1661

parameter, the following information is listed: 1662

• The formal parameter name 1663

• The expected data type of the parameter’s value 1664

• If a the service is required to implement the parameter 1665

A.1 Connections 1666

The following parameters describe how the service handles session lifetimes and registrations. 1667

A.1.1 Last Updated 1668

Formal Name lastUpdated
Data Type xs:dateTime [XSDPart2]
Required Yes

This parameter provides a timestamp of when the service last updated the common info parameters (this 1669

parameter not withstanding). The timestamp must include time zone information. Implementers should 1670

expect clients to use this timestamp to detect if any cached values of the (other) common info parameters 1671

may have changed. 1672

A.1.2 Inactivity Timeout 1673

Formal Name inactivityTimeout
Data Type xs:nonNegativeInteger [XSDPart2]
Required Yes

This parameter describes how long, in seconds, a session may be inactive before it may be automatically 1674

closed by the service. A value of ‘0’ indicates that the service never drops sessions due to inactivity. 1675

Inactivity time is measured per session. Services must measure it as the time elapsed between (a) the time at 1676

which a client initiated the session’s most recent operation and (b) the current time. Services must only use 1677

the session id to determine a session’s inactivity time. For example, a service does not maintain different 1678

inactivity timeouts for requests that use the same session id, but originate from two different IP addresses. 1679

Services may wait longer than the inactivity timeout to drop a session, but must not drop inactive sessions 1680

any sooner than the inactivityTimeout parameter indicates. 1681

A.1.3 Maximum Concurrent Sessions 1682

Formal Name maximumConcurrentSessions
Data Type xs:positiveInteger [XSDPart2]
Required Yes

This parameter describes the maximum number of concurrent sessions a service can maintain. Upon startup, 1683

a service must have zero concurrent sessions. When a client registers successfully (§5.3), the service increases 1684

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

81

DRAFT

its count of concurrent sessions by one. After successful unregistration (§5.4), the service decreases its count 1685

of concurrent sessions by one . 1686

A.1.4 Least Recently Used (LRU) Sessions Automatically Dropped 1687

Formal Name autoDropLRUSessions
Data Type xs:boolean [XSDPart2]
Required Yes

This parameter describes whether or not the service automatically unregisters the least-recently-used session 1688

when the service has reached its maximum number of concurrent sessions. If true, then upon receiving a 1689

registration request, the service may drop the least-recently used session if the maximum number of 1690

concurrent sessions has already been reached. If false, then any registration request that would cause the 1691

service to exceed its maximum number of concurrent sessions results in failure. 1692

A.2 Timeouts 1693

Clients should not block indefinitely on any operation. However, since different services may differ 1694

significantly in the time they require to complete an operation, clients require a means to determine 1695

appropriate timeouts. The timeouts in this subsection describe how long a service waits until the service 1696

either returns sensorTimeout or initiates a service-side cancellation (§5.16.2.1). Services may wait longer than 1697

the times reported here, but, (under normal operations) must not report a sensorTimeout or initiate a 1698

cancellation before the reported time elapses. In other words, a client should be able to use these timeouts to 1699

help determine a reasonable upper bound on the time required for sensor operations. 1700

Note that these timeouts do not include any round-trip and network delay—clients should add an additional 1701

window to accommodate delays unique to that particular client-server relationship. 1702

A.2.1 Initialization Timeout 1703

Formal Name initializationTimeout
Data Type xs:positiveInteger [XSDPart2]
Required Yes

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to perform 1704

initialization before it returns sensorTimeout (§5.9.4.10) or initiates a service-side cancellation (§5.16.2.1). 1705

A.2.2 Get Configuration Timeout 1706

Formal Name getConfigurationTimeout
Data Type xs:positiveInteger [XSDPart2]
Required Yes

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to retrieve 1707

its configuration before it returns sensorTimeout (§5.10.4.12) or initiates a service-side cancellation 1708

(§5.16.2.1). 1709

A.2.3 Set Configuration Timeout 1710

Formal Name setConfigurationTimeout
Data Type xs:positiveInteger [XSDPart2]

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

82

DRAFT

Required Yes

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to set its 1711

configuration before it returns sensorTimeout (§5.11.4.11) or initiates a service-side cancellation (§5.16.2.1). 1712

A.2.4 Capture Timeout 1713

Formal Name captureTimeout
Data Type xs:positiveInteger [XSDPart2]
Required Yes

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to perform 1714

biometric acquisition before it returns sensorTimeout (§5.11.4.11) or initiates a service-side cancellation 1715

(§5.16.2.1). 1716

A.2.5 Post-Acquisition Processing Time 1717

Formal Name postAcquisitionProcessingTime
Data Type xs:nonNegativeInteger [XSDPart2]
Required Yes

This parameter describes an upper bound on how long, in milliseconds, a service takes to perform post-1718

acquisition processing. A client should not expect to be able to download captured data before this time has 1719

elapsed. Conversely, this time also describes how long after a capture a server is permitted to return 1720

preparingDownload for the provided capture ids. A value of zero (‘0’) indicates that the service includes any 1721

post-acquisition processing within the capture operation or that no post-acquisition processing is performed. 1722

A.2.6 Lock Stealing Prevention Period 1723

Formal Name lockStealingPreventionPeriod
Data Type xs:nonNegativeInteger [XSDPart2]
Required Yes

This parameter describes the length, in milliseconds, of the lock stealing prevention period (§5.6.2.2). 1724

A.3 Storage 1725

The following parameters describe how the service stores captured biometric data. 1726

A.3.1 Maximum Storage Capacity 1727

Formal Name maximumStorageCapacity
Data Type xs:positiveInteger [XSDPart2]
Required Yes

This parameter describes how much data, in bytes, the service is capable of storing. 1728

A.3.2 Least-Recently Used Capture Data Automatically Dropped 1729

Formal Name lruCaptureDataAutomaticallyDropped
Data Type xs:boolean [XSDPart2]
Required Yes

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

83

DRAFT

This parameter describes whether or not the service can automatically deletes the least-recently-used capture 1730

to stay within its maximum storage capacity. If true, the service may automatically delete the least-recently 1731

used biometric data to accommodate for new data. If false, then any operation that would require the service 1732

to exceed its storage capacity would fail. 1733

 1734

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

84

DRAFT

Appendix B Content Type Data 1735

B.1 Content Type 1736

This appendix contains a catalog of content types for use in conformance profiles. 1737

B.2 Image Formats 1738

Refer to [CTypeImg] for more information regarding a specific type. 1739

image/bmp Windows OS/2 Bitmap Graphics
image/jpeg Joint Photographics Experts Group
image/png Portable Network Graphics
image/tiff Tagged Image File Format
 1740

B.3 Video Formats 1741

Refer to [CTypeVideo] for more information regarding a specific type. 1742

video/h264 H.264 Video Compression
video/mpeg Moving Pictures Experts Group
 1743

B.4 General Biometric Formats 1744

biometric/ansi-nist-itl-2000 American National Standard for Information Systems – Data Format for the
Interchange of Fingerprint, Facial, & Scar Mark & Tattoo (SMT) Information
[AN2K]

biometric/cbeff-2010 Common Biometric Exchange Formats Framework with Support for Additional
Elements [CBEFF2010]

 1745

B.5 Modality-Specific Formats 1746

biometric/iso-19794-2-05 Finger Minutiae Data [BDIF205]
biometric/iso-19794-3-06 Finger Pattern Spectral Data [BDIF306]
biometric/iso-19794-4-05 Finger Image Data [BDIF405]
biometric/iso-19794-5-05 Face Image Data [BDIF505]
biometric/iso-19794-6-05 Iris Image Data [BDIF605]
biometric/iso-19794-7-07 Signature/Sign Time Series Data [BDIF707]
biometric/iso-19794-8-06 Finger Pattern Skeletal Data [BDIF806]
biometric/iso-19794-9-07 Vascular Image Data [BDIF907]
biometric/iso-19794-10-07 Hand Geometry Silhouette Data [BDIF1007]
 1747

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

85

DRAFT

Appendix C Pending Issues 1748

The following is a list of pending/open issues regarding the WS-BD specification. 1749

1. It is assumed that messages are returned from the service in a single language. Integrated 1750

multilingual support might be supported by a special sensor service configuration operation, or, by 1751

supporting multiple languages within the messages returned by a service. 1752

2. Should we allow for content negotiation? 1753

3. Should the LSPP be determined automatically, based on the longest running sensor operation? 1754

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

86

DRAFT

Appendix D Acknowledgments 1755

The authors thank the following individuals and organizations for their participation in the creation of this 1756

specification. 1757

Tod Companion, Department of Homeland Security, Science & Technology Directorate 1758

Bert Coursey, Department of Homeland Security, Science & Technology Directorate 1759

Nick Crawford, Government Printing Office 1760

Valerie Evanoff, Federal Bureau of Investigation, Biometric Center of Excellence 1761

Rhonda Farrell, Booz Allen Hamilton 1762

Michael Garris, National Institute of Standards and Technology, Information Technology Lab 1763

Dwayne Hill, Department of Defense, Biometric Standards Working Group 1764

John Manzo, Federal Bureau of Investigation, Biometric Center of Excellence 1765

Scott Swann, Federal Bureau of Investigation 1766

Cathy Tilton, Daon Inc. 1767

Ryan Triplett, Department of Defense, Biometric Standards Working Group 1768

Bradford Wing, National Institute of Standards and Technology, Information Technology Lab 1769

 1770

Specification for WS-Biometric Devices (WS-BD)
Revision 0 / Draft 2

87

DRAFT

Appendix E Revision History 1771

Draft 0—Initial release. Operations and data types are well defined, but detailed documentation is not yet 1772

complete. Appendixes (metadata, conformance, and security profiles) are not yet written. 1773

Draft 1—Second release (1 March 2011). Made significant improvements based on public comment. 1774

Removed ‘Detailed Info’ and augmented ‘Get Content Type’ into ‘Get Download Info.’ Detailed operation 1775

documentation is complete, but appendixes still need work. 1776

Draft 2—Third release. Made significant improvements based on comments provided by Department of 1777

Defense. Added section related to ‘Metadata’. Modified WsbdResult to combine common fields into a single 1778

metadata field. Added WsbdRange and WsbdParameter types to the data dictionary. 1779

